
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1989

Software reliability optimization by redundancy
and software quality management
Dong Hae Chi
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons, and the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Chi, Dong Hae, "Software reliability optimization by redundancy and software quality management " (1989). Retrospective Theses and
Dissertations. 8919.
https://lib.dr.iastate.edu/rtd/8919

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8919&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8919&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F8919&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F8919&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8919?utm_source=lib.dr.iastate.edu%2Frtd%2F8919&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

The most advanced technology has been used to photo
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6" x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

Order Number 8920116

Software reliability optimization by redundancy and software
quality management

Chi, Dong Hae, Ph.D.

Iowa State University, 1989

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

Software reliability optimization by redundancy

and

software quality management

by

Dong Hae Chi

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major; Industrial Engineering

Approved;

In Charge of Major Work

For the Major Department

For^e Graduate College

Iowa State University

Ames, Iowa

1989

Copyright © Dong Hae Chi, 1989. All rights reserved.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF CONTENTS

1 GENERAL INTRODUCTION 1

1.1 Abstract 1

1.2 Research Problem 2

1.3 Objectives of The Research 3

2 AN OVERVIEW OF QUALITY PROGRAMMING 5

2.1 Modeling 5

2.2 Requirement Specification 8

2.2.1 Software requirement 8

2.2.2 Test requirement 9

2.2.3 Documentation requirement 10

2.3 System Performance Prediction 10

2.4 System Pre-optimization 10

2.5 Concurrent Software Design and Test Design 11

2.5.1 Software design 11

2.5.2 Test design 13

2.6 Concurrent Coding, Testing, and Management 13

2.7 System Optimization 14

www.manaraa.com

iii

2.8 Software Acceptance 14

2.9 Resource Reallocation 15

3 SYSTEM PERFORMANCE PREDICTION 16

3.1 Notation 17

3.2 Review of Complexity 18

3.2.1 Zipf's law of natural language 18

3.2.2 Halstead length equation 21

3.2.3 Other complexity models 22

3.3 Complexity vs. Number of Errors 22

3.4 The Indices of Performance 23

4 OPTIMAL ALLOCATION OF SOFTWARE RELIABILITY

AND REDUNDANCY 25

4.1 Notation 25

4.2 Review of Software Reliability Model 27

4.2.1 Software reliability vs. hardware reliability 27

4.2.2 Classification of software reliability model 28

4.3 Software Reliability-Cost Function Development 28

4.3.1 Jelinski-Moranda model 30

4.3.2 Goel-Okumoto nonhomogeneous Poisson process model ... 34

4.4 Software Redundancy Model 37

4.4.1 Two-component Markov model . 37

4.4.2 Three-component Markov model 43

4.4.3 Four-component Markov model 46

www.manaraa.com

iv

4.4.4 N-component Markov model with common-cause 48

4.4.5 Generic. N-component Markov model 52

4.5 Formulation of The Software Reliability Optimization 69

4.5.1 A pure software system 69

4.5.2 A hardware and software mixed system 71

4.5.3 The type of resources 72

4.5.4 Other problem formulation 74

4.5.5 Redundancy cost function 74

4.6 Optimal Reliability and Redundancy Allocation Algorithm 75

4.6.1 Lagrange multiplier and Kuhn-Tucker conditions 76

4.6.2 The branch-and-bound technique in integer programming . . 76

4.6.3 Randomized Hooke and Jeeves method 77

4.6.4 Combination of the randomized H-J method and the branch-

and-bound technique 78

4.7 Examples 78

4.7.1 A pure software system 7

4.7.2 A hardware and software mixed system 8

SOFTWARE QUALITY MANAGEMENT 8

5.1 Review on SIAD Trees and Input Domain Reliability Model S

5.1.1 SIAD tree 6

5.1.2 Input domain reliability model ï

5.2 Software Quality Control Process i

5.2.1 Description of software quality variation outcomes {

www.manaraa.com

V

5.2.2 Data collection design 97

5.2.3 Data charting design 101

5.2.4 Concurrent data collection and charting 107

5.2.5 Variation analysis 107

5.2.6 Cause identification 107

5.2.7 Causes elimination 109

5.3 Use of Statistical Control Techniques 110

0.4 Use of Fault Tree and Event Tree Analyses Ill

6 CONCLUSIONS 113

7 ACKNOWLEDGEMENTS 117

8 BIBLIOGRAPHY 119

www.manaraa.com

vi

LIST OF TABLES

Table 4.1: Data for a numerical example 80

Table 4.2: Optimal solution 81

Table 4.3: Component reliabilities and development costs 82

Table 4.4: Data for a mixed system example 83

Table 4.5: Optimal solution 83

Table 5.1: A regular SIAD tree 89

Table 5.2: Test element 90

Table 5.3: A weighted SIAD tree 90

Table 5.4: Outcomes vs. Phases 102

www.manaraa.com

vii

LIST OF FIGURES

Figure 2.1: A process for reliability-related quality programming 7

Figure 3.1: Occurrences frequency vs. rank 19

Figure 4.1: A typical plot of Z{tj) for the JM model 32

Figure 4.2: Transformed two-component software redundancy 38

Figure 4.3: Two-component Markov model with common-cause failure . 38

Figure 4.4: Three-component software redundancy 44

Figure 4.5: A Venn diagram of failure rate 45

Figure 4.6: Three-component Markov model with common-cause failures 47

Figure 4.7: Four-component Markov model with common-cause failures 47

Figure 4.8: N-component Markov model with common-cause failure . . 49

Figure 4.9: Configuration of N-component redundant system 52

Figure 4.10: Generic N-component Markov model 53

Figure 5.1: Software quaHty control process 87

Figure 5.2: A tree structure 89

Figure 5.3: Regression line 106

Figure 5.4: Transformed regression line 106

www.manaraa.com

1

1 GENERAL INTRODUCTION

1.1 Abstract

This study investigates both the trade-offs among system reliability improve

ment, resource consumption, and other relevant constraints, and the application of

statistical control methods to monitor variations. A process for reliability-related

quality programming is developed to fill existing gaps in software design and devel

opment so that a quality programming plan can be achieved. A software reliability-

to-cost relation is developed both from a software reliability-related cost model and

software redundancy models with common-cause failures. The software reliability

optimization problem will be formulated into a mixed-integer programming problem

and solved by a branch-and-bound technique.

A procedure will be developed to identify, define, develop, and demonstrate a

quality performance measure to improve system operation that is based on statis

tical control methods. Despite the most painful effort to control product quality,

variation in product quality is unavoidable. Through the use of process control

techniques, such as statistical control chart, unusual variations in the software de

velopment process can be controlled and reduced.

www.manaraa.com

2

1.2 Research Problem

Software technology has been criticized for its high cost, low reliability, and

frequent delays. Forty percent of software development costs are spent in testing

to remove errors [9] and assure high quality, but in fact, high cost and delays are

still cited as the results of low reliability. By focusing on the overall system, we

can improve low system reliability (1) by debugging the program or (2) by adding

redundant components. Module testing, integration testing, and field testing rep

resent the first approach, while N-version programming, recovery block, redundant

data structure, and redundant data storage are examples of the second approach.

The techniques of using more reliable components and adding redundancies to

improve system reliability have been widely used in hardware systems. Nevertheless,

software differs from hardware in terms of failure causes and reliability modeling

measures. Therefore, the conventional techniques for modeling hardware systems

cannot be directly applied to software performance modeling. Because many sys

tems include a significant proportion of software and because over sixty percent of

the system life-cycle cost has been spent on software-related factors, there is an

urgent need to evaluate the performance of integrated software modules to meet

optimal design specifications. This is, however, a sophisticated task because

• the system has many restrictions, such as cost, manpower, management,

scheduling, processing time, computer memory, facilities

• no methodology addresses and monitors software quality and development

• no dynamic optimization procedure exists to locate solutions for a complicated

mixed-integer-type programming problem

www.manaraa.com

3

• no systematic and generic protocol can be used to evaluate and feed back

performance of quality programming.

1.3 Objectives of The Research

The objective of this study is to perform optimally a complete software life-

cycle analysis incorporating the principles of optimization and statistical quality

control. The research consists of the following two topics.

1. Optimal Allocation of Software Reliability and Redundancy

To integrate software components into an optimization problem, The following

issues must be investigated.

• provide reliability-related quality programming process

• predict system performance

• develop the software reliability-related cost function

• develop the software redundancy model with common cause failures

• formulate the software reliabiUty optimization

• derive other reliability-related resources function

• optimize reliability-redundancy allocation

2. Software Quality Management

Through the use of process control techniques, the variation in the software

development process can be controlled and reduced. To set up a procedure to

identify, define, monitor, and control software quality, the following must be

investigated.

www.manaraa.com

4

• plan the statistical software quality control procedure with each specified

step related to a development activity

• investigate input domain testing process

• use of statistical quality control techniques

• specify the software quality variation outcomes

www.manaraa.com

5

2 AN OVERVIEW OF QUALITY PROGRAMMING

Quality programming is a means to perform optimally a complete software

life-cycle analysis incorporating the principles of optimization and statistical quality

control. A diagram of the reliability-related quality programming process is depicted

in Figure 2.1. In the following, those development phases of Figure 2.1 that are not

covered in current software practice will be discussed in order to perform optimally a

complete software life-cycle analysis that incorporates the principles of optimization.

2.1 Modeling

Modeling is the first and most important step in quality programming devel

opment process. In modeling phase, an accurate picture of the problem must be

developed to gain as broad a perspective of the problem as possible at the outset.

All aspects of input, output, and processing must be studied carefully to prevent

the original problem from being destroyed by misleading opinions, considerable ir

relevant information.

It is the study of all the factors necessary to understand the problem, to gen

erate a quality solution, and to allow the use of statistical quality control. A model

for software development is like a model performed in the manufacturing industries.

The modeling factors discussed by [12] are:

www.manaraa.com

Modeling of inputs

- types of inputs

- characteristics of each type of input

- rules for constructing inputs

- sources of inputs

Modeling of outputs

- output description

- output prototype design

- output strategies

- output quality planning

Modeling of software

- process description

- rules of using inputs

- methods of producing outputs

- data flows in a process being automated

- process control

- software characteristics

- methods of developing the software system

www.manaraa.com

INTERMEDIATE"
RESOURCES
CROSS-CHECK

SOFTWARE ACCEPTANCE

MODELING

RESOURCE
REALLOCATION

VERIFICATION
VALIDATION

REQUIREMENTS
SPECIFICATION

SOFTWARE
PROBLEM
DESCRIPTION

SYSTEM
OPTIMIZATION

SYSTEM
PERFORMANCE
PREDICTION

CONCURRENT
CODING. TESTING
AND MANAGEMENT

CONCURRENT
SOFTWARE DESIGN
AND TEST DESIGN

Figure 2.1: A process for reliability-related quality programming

www.manaraa.com

8

2.2 Requirement Specification

The second step in a quality programming development process is the require

ment specification. In this phase, the problem should be analyzed by a step-by-step

procedure and documented in detail to cover all necessary requirements and to

obtain detailed qualitative and quantitative characteristics of these inputs and out

puts.

The result of the requirement specification phase of quality programming de

velopment must be a formal document that completely describes the solution, using

both words and diagrams. This document can be used to communicate to the pro

grammer, software designer, test designer, system optimizer, failure-identification

personnel, failure-correction personnel, user, and other concerned parties.

The volume of the document varies dramatically from software to software,

depending on system complexity, size, and contractual requirements. The require

ment specification activity includes software requirements, test requirements, and

documentation requirements [12].

2.2.1 Software requirement

In the modeling phase it was sufficient to understand and identify the input,

processing, and output quantities. The next software requirement phase should

specify the detailed input, processing, and output requirements for design of the

software. In conventional practice, the requirements for the following equalities has

been poorly or insufficiently specified.

• Input description is the nature or extent of data

www.manaraa.com

9

• Definition of product unit is the user's detailed output requirement

• Product unit defectiveness is the criterion of acceptability.

The above requirement specifications should be stated carefully by the statis

tical quality control.

2.2.2 Test requirement

specification of test methods The test methods are regular test, weighted test,

boundary test, invalid test, and special test method. A combination of the

methods is required to conduct the tests.

statistical inference requirements The user should require that proper data be

collected in order to perform the necessary statistical tests.

statistical sampling methods The user should specify the most appropriate sta

tistical sampling methods consistent with the product unit definitions devel

oped as part of the modeling activity. A sampling process for estimating the

defective rate of the product unit and another sampling process for accepting

the software product unit should be used.

software acceptance criteria How good the product unit population must be

and how thorough the system testing must be to satisfy the developer and the

user that the software is acceptable and has been sufficiently tested.

The above factors should be carefully addressed and specified for both sys

tem test requirement and module test requirement. By doing this, both user and

developer would have statistical evidence that quality is built into the software.

www.manaraa.com

10

2.2.3 Documentation requirement

The type of documents should be identified and specified in detail. The product

description, in textual or blueprint form, written instruction (process description)

are fundamental tools to help ensure the understandability and quality of software.

2.3 System Performance Prediction

Use of data from the past history of similar environments can help predict the

results of future experiments. The data, called the indices of -performance, should

be provided in order to conduct system performance prediction. The management

realizes that all production personnel are part of the system and so are their prob

lems. Therefore, an effort to collect the indices of performance should be done in

advance to improve future product. On the basis of the past indices of performance,

the system failure intensity or system failure rate under a specified condition can

be predicted.

2.4 System Pre-optimization

The number of redundancies of each subsystem needs to be determined before

the design phase begins; this is because all redundancies are supposed to developed

independently from the design phase. By the use of data estimated from the system

performance prediction phase, the system optimization problem can be formulated

and solved. The procedure of pre-optimization is the same as that of main system

optimization which is conducted in the middle of coding, testing, and management

phase. A solution obtained at the system pre-optimization phase gives management

www.manaraa.com

11

a general idea of system design.

2.5 Concurrent Software Design and Test Design

The concurrent development for both software design and test design is advan

tageous because it allows cross-checking of the designs as early as possible and it

can reduce the development time considerably.

2.5.1 Software design

The designer must keep in mind the software engineering goals of modifiability,

understandability, reliability, and efficiency as he or she proceeds with the software

design. The software engineering principles of abstract data typing, information

hiding, modularization, localization, uniformity, completeness, conformability, and

statistical quality control must be observed carefully in developing the design [12].

In this study, a general guideline for producing a quality software design, in

cluding numerous design tools and techniques, is shortly discussed. Because design

is a very personalized and highly interactive process we shall leave the choice of

these tools and techniques to the reader.

2.5.1.1 Modern software design methods

top-down design The characteristics are:

• At each level, the details of the design at lower levels are hidden. Only

the necessary data and control are defined.

• Make a module small enough that it is within a programmer's intellectual

span of control (about 50 lines).

www.manaraa.com

12

• The design error will not be discovered until the end of the design process.

structured programming The characteristic is the use of a single-entry and a

single-exit control structure to provide a well-defined, clear, and simple ap

proach to program design. Since it eliminates GO TO statements completely,

the program structure is often vastly complicated and sometimes makes the

running time longer. The type of structured programming are SEQUENCE,

IF THEN ELSE, DO WHILE, and so on.

modular design A module means a modest-sized subprogram which performs in

dependently on specific function. A top-down design results in a modular

design.

2.5.1.2 Design representations techniques There are almost 18 differ

ent techniques so that a group of techniques is commonly used for designing a

software system.

flow charts There are two types of flow charts. First, the high-level flow chart is

used to represent the flow of the logic. The high-level flow chart contains only

control structures. Second, the detailed flow charts is used for the detail of

logic. Each symbol of the detailed flow chart represents a single line of code.

pseudo-code (metacode) Pseudo-code which consists of a shorthand notation for

control structure is a detailed subsection of high-level flowchart. Therefore,

pseudo-code technique is more flexible and clear than flow chart technique.

HIPO diagrams Hierarchy plus Input-Process-Output diagram consists of one H

block diagram and a set of the overview IPO and detailed IPO diagram.

www.manaraa.com

13

Warnier-Orr Diagram This diagram utilizes nested sets of braces, some pseudo

code, logic symbols.

A recommended design representation technique [61] is:

• An H diagram is drawn and major subprograms are identified.

• High-level flow charts are drawn for control structures and each major sub

program.

• Pseudo-code is written for each flowchart.

• The program (code) is written in the source language.

2.5.2 Test design

When the software modeling and requirements specification documents are

sufficiently prepared, the necessary procedure for test design is to review and refine

those documents. This procedure is applicable both to the entire software system

and to the modules of the system.

2.6 Concurrent Coding, Testing, and Management

Each system module should be tested with the statistical quality control tool

as soon as it is coded, and therefore the system can be built on a "secure-quality-

module" basis. By using the SIAD (Symbolic Input Attribute Decomposition) tree

we can represent the input domain in a convenient form and can easily trace back

the location of faults. Moreover, we may use the various statistical control charts

www.manaraa.com

14

to find system variation. Once the variation of system is detected, the assignable

causes (especially common cause) of variation need to be identified and eliminated

by the use of cause and effect diagram.

2.7 System Optimization

In developing a fault-tolerant software, the software engineers have to consider

the trade-offs among reliability improvement, resource consumption, and other rel

evant constraints. An optimal design is needed to maximize the system reliability

under the restricted resources. The system optimization problem is formulated sub

ject to various restricted resources. The value of decision variables (component's

reliabilities and the number of redundancies of each subsystem) can be determined

when the system optimization problem is solved. The predetermined value of deci

sion variables may be varied later as the development phase moves forward.

2.8 Software Acceptance

In the middle of concurrent coding and test phase, the system and component

reliabilities are examined. Since more information about the developing software,

such as failure intensity or failure rate, are readily available at this time, more

accurate system and component reliabilities can be reevaluated with updated data.

If the system and module reliabilities do not meet the reliabilities required,

reallocate the resources and solve the system optimization problem again with the

updated data. A set of solutions along with determined decision variables will be ob

tained. The management chooses a solution among the new multi-optimal solutions

obtained. The decision to be made is whether to improve module's reliabilities or

www.manaraa.com

15

to increase the number of redundancies of some modules through manageable ways.

This iteration continues until the current reliabilities meet the requirement.

2.9 Resource Reallocation

It is obvious that the component's failure rates of different stages (subsystems)

are different. When an optimal solution is chosen, each component has its own

projected reliability. Since the failure rates of each component are different, the

time required to reach the projected component reliability is also different. Residual

resources should be reallocated on the basis of those times required. Assigning

accurate amount of resources to each stage at the beginning can eventually save

development cost, time, and efforts.

www.manaraa.com

16

3 SYSTEM PERFORMANCE PREDICTION

As mentioned in the previous chapter, the main objective of the system op

timization for quality programming is to determine the number of redundancies

and reliability of each subsystem under the given various resources available. The

management is supposed to choose a solution from among the new multi-optimal

solutions obtained at the system optimization stage. To make the management's

decision reasonable and efficient, the number of redundancies of each subsystem

needs to be determined before the design phase begins; this is because all redun

dancies are supposed to be developed independently from design phase. The initial

decision on the number of redundancies of each subsystem doesn't need to be very

accurate, but close enough (1) to increase the number of redundancies later with

out reallocating the major man power for new redundancies, or (2) to decrease the

number of redundancies without wasting major effort.

The purpose of this chapter is to describe techniques that can be used to pre

dict the system performance (e.g., failure rate) at the end of specification phase. As

computer scientists try to analyze the software problem and the quality of the prod

uct, one of their first steps in the solution is to measure the software's complexity.

Many attempts to quantify the complexity of software have been made [6,5,8,11|.

Belady, in his survey on complexity, listed over 60 techniques which have ap

www.manaraa.com

17

peared in the literature [8]. Section 3.2 will discuss some important techniques and

focus in depth on Halstead's equation. Section 3.3 will discuss how can the complex

ity be converted to the number of errors in the program and how does the estimated

initial number of errors relate to the system performance prediction. Finally, the

indices of performance which makes the estimation of the system performance closer

to the true software system performance will be discussed in Section 3.4.

3.1 Notation

a slope of the line in Fig. 3.1

c constant

E effort measure

f r relative frequency of occurrence for type r

H information content

N program length (total operators plus operands) in Halstead length

equation

n total tokens

Tir frequency of occurrence of rank r

r rank

t number of distinct types of operators plus that of operands

T]i number of distinct operator types appearing in an algorithm

772 number of distinct operand types appearing in an algorithm

www.manaraa.com

18

3.2 Review of Complexity

Types of complexity are (1) size or bulk, which can be measured by the num

ber of instructions; (2) difficulty of text, which can be measured by the number of

different type of operators and operands; (3) structural complexity, which can be

measured by the graph properties of control structure; and (4) intellectual complex

ity, which can be measured by the algorithmic difficulty.

3.2.1 Zipf's law of natural language

Before the Halstead's equation is discussed it is better to check the background

of program length estimation, so called, the Zipf's law of natural language. Laws

of this nature were first studied by Zipf in connection with natural languages. He

studied the relationship between frequency of occurrence rir and rank r for words

from English, Chinese, and the Latin of Plautus. The relationship between rir and

r is depicted in Fig 3.1. Derivation of length equation (n) is as follows:

log f r = log c - a log r

log /r • r® = log c

f r = c {cons tant) .

If a = 1, then

f r - r - c

Ur — • r = c
n

Ur = —. (3.1)

www.manaraa.com

19

10.000

i-iooo

English words

100

Latin words

100 1000 10

rank r

Figure 3.1: Occurrences frequency vs. rank

www.manaraa.com

20

If we take the summation of both sides of Eq. 3.1 we get

t
nr = cn ^ -. (3.2)

r=l r=\

The summation of the series 1/r is given as follows:

è " i2((iV 1) + • • • (3 3)

Substitution of Eq. 3.3 (retaining only two terms for modest-sized t) into Eq. 3.2

yields an expression for the constant c in terms of t.

^ 0.5772 +In f

In most cases the rarest type will occur only once, in other words, — 1-

Since = 1 and r = t , we can get another equation for constant c from Eq. 3.1.

c = — (3.5)
n

By substituting Eq. 3.5 into Eq. 3.4 we can get a length equation in terms of t.

M = ((0.5772 + In f) (3.6)

This equation tells that if we know the number of distinct type t, we can estimate

the number of total tokens n.

(Example) Let's estimate the length of an article which has 200 different word

types.

n = 200(0.5772 4- In 100) = 1037 words long.

(Zipf's second law) In the tail of Zipf's law, there are generally several identical

rir values which make plateau of types, each with the same nr- Therefore, the

www.manaraa.com

21

Zipf's first law can be modified as follows:

n =-^(0.5772 +In (3.7)

Shooman and Laemmel [63] have shown that Zipf's law length equation has

about 25% overall agreement in the estimation of program length for several software

examples. Although it is not a good idea to use Zipf's law for the prediction of

system reliability, this law is simple to use and gives a general concept for estimating

program length early in the design phase.

3.2.2 Halstead length equation

Halstead [28] in his work found that for a nontrivial class of algorithms there

is a quantitative relationship between operators and operands and their usage. He

assumed that a program is a sequence of symbols, made up of alternating operator

and operand symbols. In other words, the program can be generated by a stochastic

process.

The procedure of Halstead length equation generation will be introduced in

final report.

Halstead length equation is

iV = 771 log2^ + V2 log2^ (3.8)

Halstead's measurements are somewhat closer than those of Zipf. The overall

agreement is about 14%. More data on significant sized real-world programs should

be used to investigate the accuracy of the Halstead length equation. However, this

equation can play an even more important role if it can be used for estimating

program performance early in the design process.

www.manaraa.com

22

3.2.3 Other complexity models

Other complexity rhodels are Halstead's effort function (E), Shannon's infor

mation theory, and the graphic complexity model, and the like.

• H = logi

• cyclomatic complexity

• knot complexity

• polynomial complexity

These deterministic models empirically measure the qualitative attributes of a

software and are used in the early phase of the software life cycle to predict the

number of errors in a program.

3.3 Complexity vs. Number of Errors

Complexity measurement estimates and predicts the number of errors in the

program. Four different hypotheses necessary to convert complexity measure to

number of errors are:

• Length hypothesis: the number of bugs per statement (e.g., machine language

statement is equal to one operator plus one operand).

• Information hypothesis: the number of bugs per information content (H).

• Effort measure: the number of bugs per effort (E).

www.manaraa.com

23

• Akiyama's hypothesis: the number of bugs per the number of decisions plus

the number of subroutine calls.

The proportionality constants should be carefully calculated.

3.4 The Indices of Performance

For more accurate estimation of system performance, other facts, aside from

the program length, should be considered. The indices of performance related to

the program complexity itself are

• program length

• language level

• interrelationship among instruction

• others

The indices of performance related to the developers are:

• skill (personal working experience)

• efforts (team communication, etc.)

• consistency

• others

An effort to collect the ind ices o f per formance should be made in advance to

improve the future product. At the end of the specification phase, the system failure

intensity or system failure rate under a specified condition can be approximately

www.manaraa.com

24

predicted on the basis of the past ind ices o f per formance . A set of data obtained

from the system performance prediction phase can be used to optimize the system.

An optimal solution obtained from the system pre-optimization phase could be

different from the one obtained from the system optimization phase. However, the

management can have a general idea of system design before the design phase begins.

A set of equations which make the estimation of the system performance closer to

the true system performance of underdeveloping software need to be investigated

further.

www.manaraa.com

25

4 OPTIMAL ALLOCATION OF SOFTWARE RELIABILITY AND

REDUNDANCY

To integrate software components into an optimization problem, two issues

should be investigated. First, a software reliability-related cost function has to

be chosen so that components can be incorporated into the constraint function

to represent the amount of resources required to reach a certain reliability level.

Second, the reliability function of software redundancy with common-cause failure

has to be determined so that it can be incorporated into the objective function of

the optimization problem. The following notation will be used in this chapter.

4.1 Notation

a,b unknown parameters of nonhomogeneous Poisson model

h amount of resource i available

Cl cost per unit calendar time associated with failure detection

C2 cost per unit calendar time associated with failure elimination

software reliability cost function of resource i at stage j

hardware reliability cost function of resource i at stage j

H,S set of hardware and software stages, respectively

redundancy cost function of resource i at stage j

www.manaraa.com

26

k redundant component cost coefficient

N initial number of bugs in program

probability of being in state k in Markov model

Rj (rj, Xj) reliability of stage j

RC(A,A*) cost of reliability improvement from A to A*

r denotes reliability in general

reliability and projected reliability of stage j, respectively

s operational time, s > 0

t debugging time

t r resource usage parameter per CPU hr (person hr/CPU hr)

Xj number of components at stage j

a, /3 failure rate ratio

Aj the Lagrange multipliers

A,A* current and projected failure rate, respectively

A^ failure rate of the independent component

(A^ = A ^ = Ag, in the two component case)

A^ failure rate of the common-cause of i components

A(t) program failure rate after t units of debugging time

/Li(t),m(t) expected number of faults removed after t units of

debugging time

Ht resource usage parameter per failure (person hr/failure)

$ unknown parameter of JM model

— denotes a vector

www.manaraa.com

27

4.2 Review of Software Reliability Model

The definition of software reliability chosen is the one offered by Boehm [9].

Software possesses reliability to the extent that it can be expected to

perform its intended functions satisfactory.

The objectives of this survey of the software reliability model may be summa

rized by the following;

• Determine what software structural and development characteristics are avail

able for analysis of software reliability.

• Define improved methods for collecting reliability data.

• Based on error histories seen in the data, define sets of error categories.

• Perform a survey of existing software reliability models.

4.2.1 Software reliability vs. hardware reliability

Because the basic modeling techniques of software reliability are adapted from

reliability theory developed for hardware systems, a comparison of software relia

bility and hardware reliability help in the use of these theories and in the study of

hardware and software systems.

www.manaraa.com

28

4.2.2 Classification of software reliability model

Many ways of classifying software reliability models have been proposed. Soft

ware reliability models can be classified into the deterministic model and the prob

abilistic model. Performance measures of the deterministic model are obtained by

analyzing the program texture and do not involve any random event. These deter

ministic models empirically measure the qualitative attributes of a software and are

used in the early phase of the software life cycle to predict the number of errors in

a program or are used in the maintenance phase for assessing and controlling the

quality of a software.

The probabilistic model represents the failure occurrences and the fault removal

as probabilistic events.

4.3 Software Reliability-Cost Function Development

The software reliability-related cost function represents the resources required

to improve the reliabihty of the software. For the bug-counting model, software

reliability is a function of the number of initial faults and debugging time. Thus,

the cost of improving a software from one reliability level to another can be related

to the number of faults removed during the debugging period, as well as to the

debugging time.

As indicated by Musa et al. [50], failure-identification personnel, failure-correction

personnel, and computer time are the three key cost factors involved in debugging.

By associating the resources of failure-identification personnel and computer time

with At, and the resources of failure-identification personnel, failure-correction per

www.manaraa.com

29

sonnel, and computer time with A/i, we can formulate a software reliability-related

cost function as follows:

i?C(A, A*) = (4.1)

The formulations of the extra debugging time (At) and that of the extra faults

removed (A/x) to reach A* from A depend on the choice of the software reliability

model. In this study, two important software reliability models have been employed

to formulate the At and A/Li.

First of all, the Jelinski-Moranda (JM) model [36] is used because this is one

of the earliest and probably the most commonly used model for assessing software

reliability. Next, because of its simplicity and applicability over a wide range of

testing situations, the Goel-Okumoto nonhomogeneous Poisson process (NHPP)

model [25] is used.

Time between failures models like JM model make following assumptions which

are unrealistic.

1. The instantaneous failure rate of software is proportional to the number of

errors remaining in it, each of which is equally likely to cause the next failure.

2. The time separations between failures are statistically independent and dis

tributed exponentially with different failure rates.

However, fault count models, typically, Goel-Okumoto NHPP model, assumes

that the failure process is a nonhomogeneous Poisson process. This model replaces

assumptions 1 and 2 above with those corresponding to the structure of a Poisson

process. The interfailure times are no longer independent, and the instantaneous

www.manaraa.com

30

failure rate between failures varies with time. Some software development teams

have successfully used this model to predict the number of remaining faults.

4.3.1 Jelinski-Moranda model

The software hazard function, or the failure rate during the time between

the (i-l)st and ith failures, is given by

Z(t i) = \= $(JV - (i - 1)1 (4.2)

Since this hazard function is constant, the number of faults discovered can be

easily expressed in terms of the failure rate:

(i - 1) = i v - x
$

i = 14-jV - ̂ (4.3)

Let \ j be the projected failure rate, then

A.
j = l + N (4.4)

The extra number of faults needed to be removed to reach the projected failure

rate from the current failure rate is

(4.5)

(4.6)

of faults removed to reach

Aj t i = j - i

A;
= 1 + N

$

Either Eq. 4.5 or Eq. 4.6 can be used to get the number

www.manaraa.com

31

Also, the expected extra debugging time required can be expressed in terms of

the failure rate. The total debugging time observed up to (i-l)st fault discovery is

i -1 i -1 1

E ^
k=l fc=l ^

because the MTTF is the reciprocal proportion of failure rate. The total debugging

time required to reach the projected failure rate Xj is

j-1 i-1 1

k=l 6=1 ^

Therefore, the extra debugging time required to reach Xj becomes

j - i i -1
At = ~ "ïl

k=l fc=l

=

k=l ^ 6=1 ^

1

Eq. 4.7 can be rewritten in terms of A.-, so that At of a given Xj can be directly

Xj
evaluated. Since j = 1 + N —

i - 1

At = Y .
A - (& -1)1

" £ «1^ -{k-1)1

In some cases, the reliability objective is based on the reliability level of a

given operation time. To formulate the reliability-related cost function of this type.

www.manaraa.com

32

f a 1 l u r e
r a t e

(N-l)i{i *

(N-3)*

(N-4 .

tw

Execution time

Figure 4.1: A typical plot of Z{t i) for the JM model

www.manaraa.com

33

reliability can be represented as a function of debugging time plus operation time.

The system reliability r(s) after the ith failure occurs is

ri(,) = (4.9)

To represent the number of faults discovered in terms of the system reliability,

In r^-(s) = -X-s

^ ^ I n r i (s)
(4.10)

Substitute Eq. 4.10 into Eq. 4.3; then,

i = 1 + AT + (4.11)

Let r j (s) be the system reliability desired; then,

lnr,-(s)
J = l + JV+-^ (4.12)

Therefore, the extra number of faults removed to reach the system reliability

required is

An = j-i = ^[Inrj(j) - Inrj(s)] (4.13)

Eq. 4.13 can be rewritten in terms of the parameters available and the system

reliability required.
In7';(5)

= 1 + N - i+ (4.14)

Also, the extra debugging time required to reach r j { s) after ith fault discovery

is
J —1 i—1

= T , h - h-
k=l k=l

www.manaraa.com

34

From Eq. 4.12, let M be j-1, then

In 7-J (a)
M = j - l — N- \ ^— (4.15)

Therefore,
M 1

- { k - 1)1

4.3.2 Goel-Okumoto nonhomogeneous Poisson process model

In this model Goel and Okumoto [25] assumed that a software system is subject

to failures at random times caused by faults present in the system. The following

form of the model was proposed

P [N { t) = y] = = 0,1,2,... (4.17)

When the Goel-Okumoto NHPP model is used, the expected number of faults

removed after debugging time t is

m[i) = a[l - e~^^] (4.18)

and the program failure rate at intermediate debugging time t is

X { t) = m ' { t) = abe~^^ . (4.19)

Therefore, the debugging time t and the debugging time <*, to reach the pro

jected failure rate A*, can be represented in terms of failure rate. Since InA =

ln(a6) - bt ,

t = -[ln(a6) - In A]. (4.20)

www.manaraa.com

35

and

t* = ̂ [ln{ab)~\nX*] . (4.21)

Additionally, the expected number of faults removed, to reach A* can

be represented as

m{t*) = a(l —)

= o[l - g-(ln(a6)-lnA*)j

-
A*

= O — -g-, (4.22)

Let the objective failure rate be A*, the current time be t, and the current

failure rate be A, the extra debugging time required and the extra faults removed

to reach A* from A are

= t* - t

= i(lnA-lnA*)
0

Am = a{e-^^

(4.23)

= ae — In ab gin A _ gin A*

A > A*. (4.24)

Let Sj^ be the time between failures (k-l)th and kth, and be the time to k

failures, then it can be shown that the conditional reliability function of Sf^, given

h-1 =

= exp —a e -b t _ -6(<+s (4.25)

www.manaraa.com

36

To represent t in terms of r(s|i),

-b t _ -b{ t+3) ^ lnr{s \ t)

e-^ t _ g-6< . ̂ -bs

(1 _

, -h t

-b t = In

lnr(a|<)

a
lnr(a|f)

a
lnr(a|f)

'a(l

- lnr(s|<)

t = — 7 In
b

lnr{s \ t)

a(l - e

Similarly, m(t) can be represented in terms of r(a|f). Hence,

m{t) = «(1 - e-W)

= a 1 +

- : a +

lnr(s|<)

a(l - e-^«)

lnr(s|i)

(l - e-bs) •

Therefore,

Ai =

Am =

t * - t

In -
In r { s \ t)

a{ l - e-bs)

T n { t *) — m { t)

lnr(s|i*) lnr(a|<)

— In I —
lnr(a|(*)

a(l _ p-bs

{1-e-bs) (1 _ p—bs

{ 1 - l - b s ^ [lnr(.K*)-lnr(3|t)l.

(4.26)

(4.27)

www.manaraa.com

37

4.4 Software Redundancy Model

In software development, redundancies are programs developed by different

groups of people or different companies based on the same specifications. These

programs are designed to perform the same function. In order to make the failures

of redundant copies to be as independent as possible, different computer languages,

development tools, development methodologies, and testing strategies may be ap

plied to different redundant programs.

Nevertheless, it has been shown that software redundancies are not totally

independent [18,38]. Some input data will fail more than one redundancy because of

the common errors made by different development teams. This partial independence

of software redundancies can be represented by a common-cause model. Some

specific common-cause models have been proposed, especially in the area of nuclear

safety. The common-cause model for software redundancy is developed as follows.

4.4.1 Two-component Markov model

Because of common-cause failure, a system with two partially independent

software components in parallel can be transformed into a series system with two

independent components in parallel and a common-cause component as shown in

Figure 4.2. The Markov model of this system with common-cause failure is shown

in Figure 4.3 where the failure rates of each independent component are assumed

to be the same.

Let the state number of this Markov process be the number of components

failed. Then, the differential equations of this Markov process are

www.manaraa.com

38

Figure 4.2: Transformed two-component software redundancy

Figure 4.3: Two-component Markov model with common-cause failure

www.manaraa.com

39

Po(t) = -(2Ai + X2)PoW

P{(1) = 2AiPo(') - APiCi)

4(0 = A2F0W + AlflM

^bC) + PiC) + ̂ 2(0 = I

with initial condition PQ{0) = 1.

When the Laplace transform is taken,

- 1 = -(2^1 + A2)PO('S)

= 1/(5 + 2Ai + A2)

and

sPi{s) = 2AIPO(5) - (Ai + A2)PI(S)

_ -^1 I '^^2

where

s + A]^ + A2 s + 2A^ + A2

.4]^ = 2A]^/A]^ = 2

.42 = 2A]^/ — A2 = —2.

Taking the inverse Laplace transform, the state probabilities are

Po(0 = e~(2Ai+A2)i

Pl{ t) = 2e~('^ l+ ' ' ^2)^ - 2e~(2Ai+A2)<

www.manaraa.com

40

The system reliability is

Rsi t) = PQ{t) + Pi{ t)

= - e-(2'\l+A2)< (4.28)

By the use of matrix method, the same system reliability can be derived. The

differential equations based on the Markov model can be expressed in terms of

matrix.

P'{ t) = Ap{t)

The transient matrix A for a two-component redundant system is

— (2A^ + Ag) 0 0

—(A^ -f A2) 0

A2 (Ai + A2) 0

with eigenvalues Eq = -(2A2 + A2), = -(A^ + A2), and E2 = 0.

For every complex n x n matrix A there exists a nonsingular matrix P such

that the matrix

J = P-^AP

is in the canonical form

J =

^0

JL 0

0 •••

J'. n

where J is called Jordan canonical form and it is a diagonal matrix with diagonal

element of matrix A, i.e.,

www.manaraa.com

41

EQ

J = El

E n

A set of corresponding eigenvectors for a two-component redundant system is

P = (PoÂ^2)

The eigenvectors lead to three sets of linear equations associated with a set of three

equations in three unknowns.

(EvI - X)Pi = 0 ! = 0,1,2

where Ej is an eigenvalue and I is the identity matrix.

The values of the first vector Pq are the solution of the following simultaneous

equations.

(EoI-A)(Po)

0 0 0 PqO

—2A]^ — 0 — 0

"•^2 ~(^1 + ^2) "(2-^1 + -^2) ^02

Therefore,

^0 =

1

- 2

1

www.manaraa.com

42

For Pi,

(EiI-A)(Pi)

-Ai 0 0

-2\i 0 0

-A2 -(A^ + A2) -(Aj + A2)

^10

fll

Pn

= 0

Therefore,

0

-1

1

For P21

(E2l-A)(P2)

(2A1+A2) 0 0

—2A^ 4-(A^ "T A2) 0

-A2 ~(^1 + •^2) ^

^20

P2\

P22

= 0

Therefore,

P2 =

Hence, the matrix P becomes

P = (^0-^1^2) =

1 0 0

- 2 - 1 0

1 1 1

www.manaraa.com

43

The inverse matrix P~^ is the same as F and the matrix J becomes

-(2^1 + -^2) 0 0

^ 0 — (+ A 2) 0

0 0 0

Using the initial conditions,

PoW 1

P(0) = PIM — 0

PiW 0

and

fo(<) 1 0 0 e^Oi 0 0 1 0 0 1

fï(<)
= =

-2 -1 0 0 0 -2 -1 0 0

1 1 1 0 0 1 1 1 0

Therefore,

P2{t) = + 1.

The system reliability is

Rs{ t) = 1 - P2{t) =

4.4.2 Three-component Markov model

A system with three partially independent software components (A, B, and C)

in parallel is shown in Figure 4.4. Since some input will cause one, two, or three

components to fail, the failure rate of each software component (e.g., component

A) can be broken down into an independent failure rate (A ^), two two-component

www.manaraa.com

44

Figure 4.4: Three-component software redundancy

common-cause failure rates and and a three-component common-cause

failure rate (A A Venn diagram (Figure 4.5) can be introduced to provide a

better picture of these failure rate divisions.

Here, the system is operating as long as any entire circle among three circles

is good. By assuming Aj^ = A^ = A^ = A^, A2 = A^^ = ^BC ~

and A 3 = A 45(7, a three-component Markov model with common-cause failure is

shown in Figure 4.6. The differential equations and initial condition are as follows.

-Pq'CO = -(3Ai + 3A2 + A3)Po(i)

Pl'(t) = ZXiPQ{t) - (2Ai -F 3A2 + A3)Pi(<)

P2'(t) = 3a2po(^) + 2(Ai -t- A2)Pi(0 - (A ^ 4 - 2 A 2 - r

= ^3-^o(^) + (^2 + -^3)^1(0 + (-^1 + 2A2 -r A3)P2(0

•Po(0 + -PiCO + -^2(0 + -^3(0 = 0

www.manaraa.com

45

Figure 4.5: A Venn diagram of failure rate

and initial conditions fQ(0) = 1,P]^(0) = P2(®) ~ -^3(0) = 0.

Taking the Laplace transform,

- -(3Ai + 3A2 + A3)PO(5)

P b (^) = l / (s + 3 A i + 3 A 2 + A 3)

and

sPi(s) = 3AiPo(s) - (2Ai + 3A2 + A3)Pi(a)

3AiPo(â)
Pl i s) =

s + 2A- j ^ "T 3A2 + A3

••^1 £2
s + 2A^ + 3A2 "1" A3 s "T SA^ 4- 3A2 4" A3

where 4l=3, v4.2=-3. And

•s-P2(^) = (2Ai-t-2A2)PI(s) + 3A2PO(-3) - (Ai + 2A2 + A3)P2(S)

www.manaraa.com

46

, = (2Ai + 2A2)Pi(^) + 3A2Po(a)

(s + A;I^2A2 + A3)

= I ^2 . ^3
s "i" A2 2A2 "T Ag s + 2A2 -f- 3A2 "t" Ag 3 + 3A^ 3A2 -l- Ag

where

_ 3(2A^ + A2 + 3A2A2) _

^ (A i + A 2) (2 A i + A 2)

6A? + 6A1Ao

" - (A i + A 2) (A I) = - «

6A? 4- 3Ai Ao

= - (2 A I - A 2) (- A I) = ' •

Taking the inverse Laplace transform, the state probabihties are

Pq(<) =

Pl{ t) = 3e~(2Ai+3A2+A3)i _ 3g-(3Ai+3A2-t-A3)<

P2(0 = - 6e~(^^l"''^'^2+A3)i ^ 3g-(3Ai+3A2+A3)i

The system reliability is

Rs{ t) = PQ{ t) + P i i t) + P2{ t)

= 3e"(^l"^^^2+'^3)^ - 3e-(2Ai4-3A2+A3)< (4.29)

= +e-(^^l+^'^2+^3)^ (4.30)

4.4.3 Four-component Markov model

Based on the same argument, the four-component Markov model is shown in

Figure 4.7 and the differential equations are as follows:

^6(^) ~ ~(4Ai + 6A2 + 4A3 + A4)Po(i)

www.manaraa.com

47

3X, 2 (X j + X g) + 2 ^ 2 + X 3

Figure 4.6: Three-component Markov model with common-cause failures

3(X, + Xm)

+ 2X„+X3)(3JA1+3X2+3X3+X

Figure 4.7: Four-component Markov model with common-cause failures

www.manaraa.com

48

P[{ t) = 4AjPo(0 — (3-^1 + 6A2 + 4A3 + A4)Pi(i)

P2{ i) = 6A2-PO(') + 3(A;|^ 4-A2)PI(0 ~ (2A]^ + 5A2 + 4A3 + A4)P2(i)

— 4A3/'o(0 + 3(A2 + A3)P]^(f) 4-(2A]^ + 4A2 + 2A3)P2(0

—(Ai + 3A2 + 3A3 + \ ^)P2{ t)

•^4(0 = •^4-^o(^) + ('^3'^4)'^l(0 + (-^2 + 2A3 + A4)P2(0

4-(Ai + 3A2 + 3A3 + A4)P3(<)

with initial conditions Pq(0)=1, Pi(0) = ̂ 2(0) = ̂3(0) = ̂4(0) = 0.

Taking the Laplace transform and then the inverse Laplace transform, the

system reliabiUty is

Rs = 4e~(^ l+^ ' ^2+3 ' ^3+ ' ^4) ^ - 6e~(^ ' ^ l " ^ ^ ' ^2+4A3+A4) f

4.4e~(3'^l+6A2+4A3+A4)i _ g-(4Ai-f6A2+4A3+A4)<_ (4.31)

4.4.4 N-component Markov model with common-cause

The model can be extended to a generic N-component model. Without making

a significant discrepancy in system reliability, a simplified N-component Markov

model can be considered and shown in Figure 4.8. In this simplified model, the

only common-cause failures considered are the common-cause failures that cause

all the redundancies to fail. This common-cause failure rate may represent the

failure rate of system software. The system reliability of this simplified model can

be derived from the preUminary analysis as follows:

The differential equations of this Markov process are

— -(-^A -f AC)Pjy(0

www.manaraa.com

49

N-1

X

Figure 4.8; N-component Markov model with common-cause failure

www.manaraa.com

50

= {k + - (&A + Ac)Pfc(i) k=N-l,..,l

Poi i) = ̂ c [P i { t) + ... + PNW] + APi(i)

Sf=0 PkW = 1

Pjy(O) = 1

Taking the Laplace transform and the inverse Laplace transform, the state

probabilities can be derived as follows.

sPjY(s) — 1 = —(iVA + Xc)P^{s)

= l / (s + i V A - f - A c) ;

then,

In addition.

_ - { N X + X c) t (4.32)

N X P j ^ { s) - [{ N - 1)A + Xc]P j \ f_i{ s) = sPjY_i{ s) (4.33)

then

PiV-l(s) =
s + (iV — 1)A + Ac

N N

s + (iV — 1)A + Ac 5 + NX 4- Ac

PiV-l(^) =]ve" K ^ - l)A+Acl(_ jvg-(ArA+Ac)< (4.34)

In general, the state probabilities and the system reliability can be derived as

follows.

N
Pk i ^) = É

j=k

N \ , N

V ' p='2,p^i

\

(4.35)

/

www.manaraa.com

51

N-1
Rs{i) = ^ (4.36)

k=l

The above solutions of state probabiUties are in exact but complex forms. An

approximated form of Equation 4.36 along with the accuracy of the solution under

the simplification assumption in a specified environment, is derived as follows.

i'J(i) = Ac[l-Po(i)l + APi(()- (4.37)

If

XPi{t) < Ac[l -

neglecting

foM = V[i-WI

•s-Po(^) = ^c / s - AcPo(^)

-Po('®) — l/a-l/(s + Ac)

and

PqH) = 1 -

The approximated system reliability is

Rs{t)z^l - PQ{t) = (4.38)

Because of expensive development cost, in reality, it would be very undesir

able to have a system of more than four software redundancies in parallel. When

other common causes exist among a small subset of N modules, we have to re

vise the above simplified model. A refinement for the full-version, unsimplified,

N-component common cause model is evaluated in next subsection.

www.manaraa.com

52

Figure 4.9: Configuration of N-component redundant system

4.4.5 Generic N-component Markov model

A system with N partially independent software components in parallel is shown

in Figure 4.9. The unsimplified Markov model of this system with common-cause

failure is shown in Figure 4.10 where the failure rates of each independent component

are assumed to be the same. Let the state number of this Markov process be

the number of components failed. Then, the differential equations of this Markov

process can be expressed in terms of matrix.

P ' { t) = AP{ t)

www.manaraa.com

53

N-1

X c

Figure 4.10: Generic N-component Markov model

The transient matrix A is

(^00 0 0 0 0

«01 ail 0 0 0

"02 «12 022 0 0

^O(n-l) ®l(n-l) ®2(n-l) '^(n-l)(n-l) °n(n-l)

" O n ® l n ® 2 n • • • ° (n — l) n

= (Sj)

4.4.5.1 Construction of matrix A An element of matrix A repre

sents the rate that the system moves from state i to state j. Let z be the system's

jump size (z = j - i).

Jump size (z) = 1

www.manaraa.com

54

First of all, the element represents the rate that the system moves from

state zero to state one. The system can move from state zero to state one only

when a component out of n good components is failed due to an independent cause

failure. Since all independent cause failures are mutually exclusive, the number of

possible outcomes of this event is the same as that of choosing one component from

n good components. In other words, the number of possible outcomes is that of

choosing one out of n good components and none out of zero failed component.

0
7 1 —

Therefore, the element becomes

v i /

^ 0 ^ 0

E
k=0 \ ̂ /

4 (4.39)

Second, the element matrix A represents the rate that system moves

from state one to state two. The system can move from state one to state two when

a component out of (n-1) good components is failed due to the introduction of one

of these two cases to the system.

• case — One of (n-1) remained independent cause failures. The number

of possible outcomes of this case consists of choosing one out of (n-1) good

components and none out of one failed component.

(n — 1)A]^ =
/

\

n . — 1

1

\

\ 0 /
'1

• ^2 case — One of (n-1) two-component common-cause failures. Here, the

number of possible outcomes for two-component common-cause failure in-

www.manaraa.com

55

eluding the failed component is that of choosing one component out of (n-1)

good components and one out of one failed component.

(n - 1)A2 =
\

^2

The element 0^2 is derived by adding the above two cases together.

(n - l){Xi + A2) —
1

E
k=0 V ^ }

(4.40)

Third, the element 023 means the system moves from state two to state three.

Since the system is in state two, there are two failed components and (n-2) good

components. If one more component out of (n-2) good components fails, then, the

system moves to state three. Three different types of failure rate (A^, A2, and A 3)

are involved in this case.

• Aj case — A failure out of (n-2) remained independent failure. The number

of possible outcomes consists of choosing one out of (n-2) good components

and none out of two failed components.

[n — 2)Aj =
n — 2

1
/

/ „ \

v » /

• A2 case — A failure out of two (n-2) two-component common-cause fail

ures. This is because there are (n-2) possible combinations of two-component

common-cause failure including one bad component. Since there are two bad

components in the system, the total number of combination is 2(n-2). This

www.manaraa.com

56

number consists of choosing one component out of (n-2) good components and

another out of two failed components.

/

2(n — 2)A2 =
n — 2

1 V ^ y
^2

• A3 case — A failure out of (n-2) three-component common-cause failures.

There are (n-2) possible outcomes of three-component common-cause failure

that include two bad components. This is because one component from (n-2)

good components and other two from two failed components.

n - 2

1

/

(n - 2)A3 =

Therefore, the element ^23 becomes

(n — 2)(A2 + 2A2 + A3) =

\ / j N

\ / V 2 /
•^3

fc=0 \ k
^k+2 (4.41)

At last, the element means the system moves from state (n-1) to state

n. Since the system is in state (n-1), there are (n-1) failed components and one good

component left. N different types of failure rates (A]^, A2, ..., A^) are involved in

this element.

• A^ case — A failure out of one good component. There is only one good

component left. The number of possible outcomes consists of choosing one

component out of one good component and none out of (n-1) failed compo

nents.

lAi =
n - I

0

\

4

www.manaraa.com

57

^2 case — A failure out of (n-1) two-component common-cause failure. Each

two-component failure includes one remained good component and one of (n-

1) failed components. The number of possible outcomes consists of choosing

one component from one good component and one component from (n-1)

failed components.

(n - 1)A2 =

(. \

\ ̂

/
Tl — 1

1
^2

A3 case — A failure out of (n-l)(n-2)/2 three-component common-cause fail

ure. There are (n-l)(n-2)/2 three-component common-cause failures. Each of

them includes one remained good component and any two out of (n-1) failed

components. The number of combination becomes simply choosing one com

ponent out of one good component and two components out of (n-1) failed

components.

(n - l) (n - 2)
A 3 =

\ V

n — 1

2

A^_]^ case — A component can also fail when the system is introduced an

(n-l)-component common-cause failure that includes a last good component.

Each (n-l)-component failure has a good component and (n-2) failed compo

nents. The number of outcomes of (n-l)-component common-cause failure is

the same as the number of choosing one component from one good component

www.manaraa.com

58

and (n-2) failed components from (n-1) failed components.

(. \

\ ' j

I
71 — 1

Tl — 2

\
^n-l

• \n case — Since the system is in state (n-1), the only possible outcome of

n-component common-cause failure is the one that includes all (n-1) failed

components and a left good component. The number of this outcome consists

of choosing one out of one good component and (n-1) out of (n-1) failed

components.

l A n =
/ i \ /

v i /

n — 1

n — 1

\

The element is derived by adding all cases together.

Tl — 1

0
Ai + X2 +

' n - l '
Ag-t-.. .4"

^ 1 \ "-1 / n - 1 ^

y 1 y k=0

' n - l '

71 — 2
-^71-1 +

n — 1

(4.42)

In general, when the system jumps only one step (z = j - i = 1), the element

Uj^j of matrix A can be represented as follows:

Hj =

\
n — I 3 -2

E
k=0

/
J - 2

k
2 = 1 (4.43)

Jump size (z) — 2

www.manaraa.com

59

The element aQ2, first, represents the rate that the system moves from state

zero to state two. This can happen when a two-component common-cause failure

fails two components in the system. There are n(n-l)/2 possible two-component

common-cause failure combinations because any two components out of n good

components are the candidates of this combination. The number of possible out

comes becomes the number of choosing two components out of n good components

and none out of zero failed component.

n (n - 1)
A2 =

\ n

\ 0 /
A2

Therefore, the element 0Q2 becomes

A2 =
fc = 0 \ K

^k+2 (4.44)

Second, for the element the system moves from state one to state three

when two components out of (n-1) good components are failed. Since a component

has been failed and (n-1) good components are available, there are two cases to be

considered.

• A2 case — Any two-component common-cause failure that do not consist the

component already failed is a good candidate. The number of this outcomes

consists of choosing two good components from (n-1) good components and

none from one failed component.

i

{n — l)(n. — 2)12X2 ~
n — 1

\ (1 ^

A2

www.manaraa.com

60

• Ag case — Any three-component common-cause failure that includes the com

ponent already failed is a good candidate. The number of this outcomes con

sists of choosing two good components from (n-1) good components and one

component from one failed component.

(n — l)(n — 2)/2Ag =
/ . \

\ 1 /

/
n — 1

2

Therefore, the element becomes the sum of the above two cases.

\

Ao -f ^3 =

\ /

1

E
k=0 k /

(4.45)

Third, the element 024 represents the rate that the system moves from state

two to state three. This could happen if any of these three kinds of failure introduced

to the system.

• A2 case — A failure out of (n-2)(n-3)/2 two-component common-cause fail

ures. Since two components are already failed, the possible outcomes for

two-component common-cause failure are any combination of two components

from (n-2) good components and none from two failed components.

(n — 2)(n — 3)
A2 =

Tl — 2

2 / vV

^2

A 3 case — A failure out of (n-2)(n-3) three-component common-cause fail

ures. The possible candidates for three-component common-cause failure are

any combination of two components from (n-2) good components and one of

www.manaraa.com

61

failed component. Since there are two components failed, the total number of

candidates for three-component common-cause failure is two (n-2)(n-3)/2.

71 — 2

2

/
(n — 2)(n — 3)Ag =

\ / V1

• A4 case — A failure out of (n-2)(n-3)/2 four-component common-cause fail

ures. The possible candidates for four-component common-cause failure are

any combination of two components from (n-2) good components and two

from two failed components.

I
(n - 2) { n — 3)

A/i —
n - 2

2 V 2 /

The element 024 is derived by adding three cases together.

Ao
(n - 2 ^

/
2A3-H

71 — 2

2

\

A4 =
^ n - 2^ 2

E
k=0

^ 2 ^
^k+2

(4.46)

In the same token, the elements 035, 045, ..., can be derived.

Finally, for the element 2)n^ the types of failure rate involved in this element

are from A2 to A^. Since there are already (n-2) failed components in the system,

the system moves to state n if the remaining two good components fail. Therefore,

every common-cause failure candidates should include these two good components.

• A2 case — The number of possible outcomes consists of choosing two compo

nents from two good components and none from (n-2) failed components.

www.manaraa.com

62

• Ag case — The number of possible outcomes consists of choosing two compo

nents from two good components and one from (n-2) failed components.

/ \

V 2 /

/
71 — 2

1

\

• case — The number of possible outcomes consists of choosing two com

ponents from two good components and (n-3) from (n-2) failed components.

/ \

V ^ / \

n - 2

n — 3

• An case — The number of possible outcomes consists of choosing two compo

nents from two good components and (n-2) from (n-2) failed components.

(_ \
n — 2

n — 2

\

^2

The sum of these cases becomes

^ n - 2 ^ ' n - 2 '

/

Ag 4-... -I-

^ n — [n — 2) ^

\ /

71 — 2

E
k

n — 3

/

/ n - 2 '

n - 2
m

\

n — 2

k
^k+2 (4.47)

In general, when the system jumps two step (z = 2), the element ojj of matrix

A can be expressed as follows:

www.manaraa.com

63

/ . \
n — I

H j =

\

/ j - z

/

E
Â:=0 \

^k+z^ " 2 = 2 (4.48)

Jump size (z) = 3

The same procedure is applied to derive each element of matrix A when

jump size becomes three. For the element agg, the number of outcomes for three-

component common-cause failure (A3) consists of choosing three components from

n good components and none from zero failed component.

/ \
n

\ 3 / \ ° /

For the element 0^4) the number of outcomes for three-component common-cause

failure (A3) and four-component common-cause failure (A4) consists of choosing

three components from (n-1) good components. Here, outcome of four-component

common-cause failure includes a failed component.

/ n — 1

3 / \ 0 /
^3'

/ V ^)
A4

For the element 025) there are three types of common-cause failure involved.

The number of outcomes for three-component common-cause failure (A3) consists

of choosing three components from (n-2) good components and none from two

failed components. The number of outcomes for four-component common-cause

failure (A4) consists of choosing three components from (n-2) good components and

one component from two failed components. The number of outcomes for five-

component common-cause failure (Ag) consists of choosing three components from

www.manaraa.com

64

(n-2) good components and choosing two components from two failed components.

/ _ \ \ /
71 — 2

3
•^3.

72 — 2

3 / V ^ /
A4,

Tl — 2

3

' ' 2 ^

\ 2 /

In general, when the system jumps three steps (z = 3), the element a- of

matrix A can be expressed as follows:

/ . \
n — I

(^ i j =

\

J - 2

E
fc=0 v k

A z = 3 (4.49)

Jump size (z) = n-1

There are two elements belong to this jump size. For the element

the number of outcomes for (n-l)-component common-cause failure (A^_]^) consists

of choosing (n-1) components from n good components and none from zero failed

component.
/

nA n-1 =
n

n — 1
/

^n-1

For the element the number of outcomes for (n-l)-component common-

cause failure (A^_]^) consists of choosing (n-1) components from (n-1) good com

ponents. The number of outcomes for n-component common-cause failure {Xn)

consists of choosing (n-1) components from (n-1) good components and one com

ponent from one failed component.

n — 1

/
(^n—1 ^Ti)

I I - 1

n — 1

\ 1

E
k=Q

^k+n—1

www.manaraa.com

65

In general, when the system jumps (n-1) steps, the element aj^j of matrix A

can be expressed as follows:

/ . \
n — I

\ /

3- z

E
k=0 k

^ f c + 2 ' z = n — I (4.50)

Jump size (z) = n

For the element qq^, the system moves from state zero to state n only when

n-component common-cause failure is introduced. The number of outcomes for n-

component common-cause failure {\ri) consists of choosing n components from n

good components.

IAtj, —

I \
n

\ /

0

E
fc=0

/

\

0
^k+n (4.51)

Jump size (z) = 0

All diagonal elements of matrix A belong to this jump size. According to the

property of transient matrix, the sum of each element in the same column should be

zero. Therefore, the rate of these element is the negative of the sum of corresponding

column vector elements.

n—i

- E «i(/fc+i)'
k=l

(4.52)

Jump size = negative

Since the system is nonrepairable, there is no backward flow in the Markov

process. All elements in the upper side of matrix A are zero.

Hence, the general equations for the elements of matrix A are;

www.manaraa.com

66

Hj

I • \ n — I

~ ^k= l

^k=0
J - z

k

'/ . \
n — I

L\
^6=0

^k+z

I . \
] - z

^fc + 2

;
0

\ { i < 3

\ i i = 3

otherwise

(4.53)

4.4.5.2 Numerical solution for system reliability In this study the

system reliability of n components will be found by the use of numerical analysis.

In order to find the numerical solution of the system reliability the numerical value

of each component in matrix A should be calculated. In the middle of testing phase,

the component failure rate can be estimated. Because the redundant components

are not yet developed, the common-cause failure rates are unknown. Then, a careful

estimation of parameters a, /3 based on historical data gives estimated common-

cause failure rates. The relationship between component failure rate and common-

cause failure rate are as follows:

— oiA, 0 < a < 1

A 2 = / 3 A 3 = . . . = Z ? " ^ A n

and

(1 — a) A — A 2 " t " A g 4 - . . . 4 - A 7 J .

Eigenvalues are the diagonal elements of matrix A.

•^0 = °00' = •••) -E'n = Ann = 0

www.manaraa.com

67

For every complex n x n matrix A there exists a nonsingular matrix P such

that the matrix

J = P - ^ A P

is in the canonical form

J =
J l 0

0

J . n

where J is called Jordan canonical form and it is a diagonal matrix with diagonal

element of matrix A, i.e.,

J =

^0

El

E-n

A set of corresponding eigenvectors is

P = • • • P n) (4.54)

The eigenvectors lead to (n+1) sets of linear equations associated with a set of

(n+1) equations in (n+1) unknowns.

(Ejl - A)Pi = 0 i = 0 , 1 , . . . , n

where is an eigenvalue and I is the identity matrix.

The values of each are the solution of Equation 4.54. Each vector Pj has

(n+1) elements, Pj = [PjQ' -^zl' • • • ' leads (n+1) simultaneous equations.

www.manaraa.com

68

Since all elements of upper side of matrix A equals to zero, all elements before

element of vector become to zero.

= 0 , i f k < i

Here, is the element of vector P^.

The first element that is not zero is the element of vector Pj. All elements

Pik {k > i) of vector Pj can be represented a function of element (Pjj). Once,

the value of Pjj is arbitrary chosen, the value of rest P^j^ (A: > i) can be determined.

By the inspection of Pjj values from simple cases, it is found that P^j = (—1)""^

gives a simple matrix whose inverse matrix is the same. Therefore, let Pj^ be

(— then, the value of rest elements of vector Pj can be calculated one by one.

After the completion of P matrix, the inverse P~^ matrix needs to be found.

With the initial conditions,

(= [-Po(O), Pl(0),..., P n { 0) f = [1,0 0]^

The probability of staying in each state can be calculated based on following equa

tion.

fbOO

P l i t)

Finally, the system reliability is

Rs{ t) = 1 — Pn{ i) -

www.manaraa.com

69

4.5 Formulation of The Software Reliability Optimization

To optimize the reliability of a software system, the reliability redundancy

allocation approach is applied. A general formulation of this problem is

Max R3{X ,R)

subject to

Z j L 1 9 i j (>• j, X j) < h for all i

4.5,1 A pure software system

A software is always accompanied with hardwares. However, when the relia

bility of hardware component in the system is known, the system reliability can be

optimized by including only software components. When only software components

are involved in the optimization problem, the above problem can be transformed

into the following form:

Max Rs{R i ,R] \ j ^)

subject to

Eje5 < h for all i

The objective function of the above formulation is represented in terms of the

stage reliabilities that are, in turn, functions of both independent module reliabilities

and of the number of redundant modules. The constraint function of the above

www.manaraa.com

70

formulation is reliability-related cost function. The reliability-related cost function

is

f { r j , r j) = Ci t r / ^ t + C2//r'A/i

where, the formations of the extra debugging time (At) and that of the extra faults

removed (A/x) to reach r* from r depend on the choice of the software reliability

model.

When the JM model is used, the formulations of the extra debugging time (At)

and that of the extra faults removed (A^u) becomes;

Af = 5]
M ^

6 -1)]

where

When the NHPP model is used, the formulations of the extra debugging time

(At) and that of the extra faults removed (A^u) becomes;

= t* - t = ^[ln(— Inrj) - ln(— InrJ)]

and

A/i = n{ t*) - n{ t) = - Inrj]

The redundancy-cost function, hij{xj), depends upon the type of constraints

involved. A constant function, an increasing function, or a decreasing function can

be used as needed and should be described in a generic form but in a form that

reflects the software development life-cycle.

www.manaraa.com

71

4.5.2 A hardware and software mixed system

When both hardware and software components are not trivial, the reliability of

both hardware and software components should be optimized with optimal number

of redundancy. In a pure software system, each stage represents an independent

functional module or subsystem. However, this model can be extended to optimize

the reliability of a hardware and software system by adding the constraint function

of hardware part.

The objective function can be

M a x

The new constraints become

The objective function of the above formulation is represented in terms of the

stage reliabilities. Each stage can be a pure software component, a pure hardware

component, or a hardware and software mixed component. The constraint function

is represented as the product of a reliability-related cost function and a redundancy-

cost function. For hardware components, the reliability-related cost function is

rj = exp[—AjS]

-S

In r j

y
f{ r j) = v j

For software components, the reliability-related cost function is

/(r^rp = CitrAt 4- C2)Ur A/i

www.manaraa.com

72

where, the formations of the extra debugging time (At) and that of the extra

faults removed (A/^) to reach r* from r again depend on the choice of the software

reliability model.

When the JM model is used, the formulations of the extra debugging time (At)

and that of the extra faults removed (A/i) becomes;

M 1

Ai -1)]

where

M = JV +

When the NHPP model is used, the formulations of the extra debugging time

(At) and that of the extra faults removed (A/x) becomes;

At = t* — t = — [ln(— In Tj) - ln(— In rj)]

and

A/i = /i(i*) - n{i) = - Inrjj

The redundancy-cost function, /i^j(xj), depends upon the type of constraints

involved. A constant function, an increasing function, or a decreasing function can

be used as needed and should be described in a generic form but in a form that

reflects the software development life-cycle.

4.5.3 The type of resources

The types of resources are:

www.manaraa.com

73

• manpower

• computer usage

• project duration required (development time)

• reliability

• memory size

• others

The reliability cost functions related with those resources can be formulated as

follows:

1. Manpower and computer time (total cost)

f l j = R C { r , r *) = C i t r ^ t - f A / / < b - ^

2 . Project duration required

f l j = t r A t < 64

where (r^t is the failure-identification time. It is assumed that the failure-

correction time is small enough to be ignored.

3. Memory space

f i j = M < 65

www.manaraa.com

74

4.5.4 Other problem formulation

When the development cost is the major concern and the performance require

ment is the system minimum reliability, a general formulation of this problem is

min (4-35)
jes

where rj is the projected component reliability. The main constraint could be

Rs{X,R) > Rs^req. The decision variables that need to be calculated are X and

R

4.5.5 Redundancy cost function

hij[xj) = k • xj (4.56)

The cost of increasing a redundant component is usually less than 1.5 times of

the original unit development cost; this is because redundancy components shared

• the cost of specification,

• some of the design cost,

• most of testing cost, and

• most of the documentation cost

together with the original component.

www.manaraa.com

75

4.6 Optimal Reliability and Redundancy Allocation Algorithm

In most reliability optimization problems, the decision variables are the number

of redundancies that are integers (integer programming or redundancy allocation

problems), the component reliabilities that are real numbers (real programming

or reliability allocation problems), or a combination of both (mixed-integer pro

gramming or reliability-redundancy allocation problems). In the methods that are

based on differentiation, the decision variables must be continuous. Earlier stud

ies treat the number of redundancies as real variables. The real number answer is

rounded off and the neighboring integer solutions are evaluated. The best feasible

solution among the trials is taken as the final solution. This method works well

if the problem is simple and the constraints are linear [46]. As the problem gets

complicated, however, the rounding off and trial-and-error procedure become inef

ficient and inaccurate. In addition, this approach provides no theoretical reasoning

and has difficulties in extending the integer programming problem to the mixed-

integer programming problem. Such an extension is frequently needed for reliability

optimization. Furthermore, computation on the trial-and-error basis cannot be ef

ficiently automated.

A method combining the Lagrange multiplier technique with the branch-and-

bound technique is proposed by Kuo et al. [40]. The Lagrange multiplier technique

quickly reaches an exact real number solution that is close to the optimal solu

tion. Next, the branch-and-bound method is used to obtain the integer solution.

This proposed method can solve both the redundancy allocation problem and the

reliability-redundancy allocation problem. When dealing with the latter problem,

only branching and bounding the integer variable is necessary.

www.manaraa.com

76

4.6.1 Lagrange multiplier and Kuhn-Tucker conditions

The Lagrange multiplier technique transforms the given constrained optimiza

tion problem into the unconstrained problem by introducing the Lagrange multipli

ers, Aj's. The unconstrained optimization problem, called the Lagrangian, becomes

M
Max L { X , R ,A) = R s { X , R) - ^ (4.57)

Z = 1

A'.s > 0.

The necessary conditions for a maximum to exist form a system of simultaneous

equations. The solutions to these simultaneous equations are extreme points in the

constraints of the problem. The nonlinear simultaneous equations can be solved

by any mathematical algorithm, such as Newton's method, which expresses the

multi-variable root-finding problem. Subroutines for solving nonhnear simultane

ous equations are available in many mathematical libraries. Examples are ZSCNT

and ZSPOW of IMSL [33], and ZONE of PORT mathematical library [53j. These

subroutines are accurate, convenient, and efficient. However, they may not con

verge, and no feasible solution exist.

4.6.2 The branch-and-bound technique in integer programming

The branch-and-bound technique of integer programming for reliability opti

mization is stated in the paper by Garfinkel and Nemhauser [22]. In step 2 among

those steps described in that paper, there are many criteria for selecting the variable

for b ranch ing [27] . Th is s tudy se lec t s the var iab le Xj tha t min imizes min{x* , l — x*)

over index i.

www.manaraa.com

77

4.6.3 Randomized Hooke and Jeeves method

The Hooke and Jeeves method requires only objective function evaluations and

does not use partial derivatives. The Hooke and Jeeves method uses the iterative

technique. This method is easy to apply for use on digital computers, since the tech

nique repeats its typical iterative moves: exploratory and pattern. The algorithm

can quickly detect and follow a steep valley of a multi-variable function because the

information accumulated in previous iterations may be used to find the most prof

itable search directions. For this reason, the method is a well-known direct search

method for unconstrained minimization problems.

However, the Hooke and Jeeves method has some difficulties when it is applied

to constrained problems. We may expect the method fails to improve the objective

function at the boundary, sharp corners, shallow regions, or ridges.

Although the Hooke and Jeeves method can get the optimal solution in un

constrained minimization problems, slow convergence close to the optimum may be

expected. As mentioned before, the Hooke and Jeeves method has some difficulties

due to its moving in only one direction at a time when constrained minimization

problems are considered. Some methods which modify the Hooke and Jeeves method

are proposed. One way to solve these difficulties is to consider random move in n-

dimensions instead of one direction at a time when the search is frozen in a certain

region.

The simplest concept of random searching inside the n-dimensional hypercube

is applied to exploratory move of the Hooke and Jeeves method. Since this method

is unbiased in choosing the next moving point, it may be useful to find the location

of a global minimum when the objective function has multiple minima. In addition,

www.manaraa.com

78

it may solve the local difficulties of the deterministic methods (Hooke and Jeeves

method).

4.6.4 Combination of the randomized H-J method and the branch-and-

bound technique

Branching and bounding only the redundancy variables are necessary and suf

ficient. The above steps can be directly applied to the mixed-integer programming

problem. For a mixed-integer programming problem, only the integer variables need

to be enumerated by the branch-and-bound procedure. The real variables are free

of restriction after each step of the branch-and-bound technique. Then by using the

randomized Hooke and Jeeves method, their new optimal values are obtained. The

branch-and-bound process is stopped whenever all the integer variables find integer

values. Multiple near optimal solutions may be achieved to provide management

with several options and flexibility.

4.7 Examples

4.7.1 A pure software system

To illustrate the procedure of optimal allocation of software reliability and

redundancy, a two-stage series software system without a hardware component is

employed. A brief description of procedure follows. At the end of the specification

phase, the parameters can be estimated by the use of any of the complexity models.

A solution derived from this optimization suggests a general direction for system

design to management.

www.manaraa.com

79

In the early state of the test phase, more accurate data can be collected as

times between failures. The form of data should be based on the reliability model

chosen in the design phase. The estimation of model parameters can be obtained

on the basis of the real data collected. Next, an optimization problem can be set

up, depending on the goal of the decision-making process.

A formulation of the optimization problem considered is

max Rs = /(A,i) (4.58)

subject to

{Citrài. t j + C2/irA/ij} • kxj < (4.59)

The parameters, cost coefficient and other data needed to solve this optimiza

tion problem are given in Table 4.1. Further assume that

= aX , 0 < a < 1 ,

•^2 = = ... =

and

(1 — a) A = ^2 4- A g 4- ... 4- A jy.

With the data given in Table 4.1, the problem was solved by the randomized

H-J method and the branch-and-bound method [40]. The optimal solution, shown

in Table 4.2, was obtained. After 20 simulation runs with different starting points

and random number seeds, the optimal solution of system reliability ranges from

Rs = 0.805 to Rs = 0.825 with the total cost ranging from $73,100 to $74,800. The

optimal solution also indicates that stage 1 needs two components to optimize the

system. The results of this optimization should serve as important input for the

decision-making process.

www.manaraa.com

80

Table 4.1: Data for a numerical example

stage 1 stage 2

$ 0.00685 0.00164
N 32.2 42

a,(3 0.95, 0.20
1, 0.1

Cl'Cg 42, 40

h 75,000
k k=0.4 for redundancies
s 20

The final step is to allocate or reallocate the residual resources on the basis

of resources required for each stage. Since the failure rate of each component is

different, the time required to reach the projected failure rate or the reliability of

each component is different. By using Equations 4.6 and 4.7 or Equations 4.13

and 4.16, the resources required to reach the projected component reliability can

be calibrated. In this example, stage one needs 26,427 units and stage two needs

48,207 units of resources. Management should realize that assigning an accurate

amount of resources (e.g., number of personnel) to each stage at the beginning can

eventually save development cost, time, and efforts.

4.7.2 A hardware and software mixed system

The system in this example has two components in series. The first compo

nent (stage A) can not have any redundant component and the cost of developing

hardware component is trivial. The reliability and development cost of hardware

www.manaraa.com

81

Table 4.2: Optimal solution

stage 1 stage 2

2 1
A,: 0.00685 0.00984

cost $26,427 $48,207
total cost $74,634

Rs 0.81

component of stage A is known. The second component (stage B) can have re

dundant components. Each hardware component in stage B has a corresponding

software. The reliability and developing cost of hardware component of stage B are

also known. Softwares of both stages A and B have not yet been developed. The

failures of stage A and stage B are independent. However, there are common-cause

failure among software redundancies of stage B.

For the purposes of this study each component in the system is said to have

failed if the output from corresponding component is not the same as it designed.

The reliabilities and development costs for both hardware components are given

in Table 4.3. The model used in this example is NHPP model. The procedure of

optimizing the system is the same as the pure software system example discussed

in the previous section.

In the early state of the test phase, more accurate data can be collected as times

between failures. The estimation of NHPP model parameters can be obtained on

the basis of the real data collected and are given in the Table 4.4. Here, the resource

usage parameters tr and /Xr are unit because the time used in this model assumed

to be an actual calendar time.

www.manaraa.com

82

Table 4.3: Component reliabilities and development costs

900-hr
reliability cost

H/W comp. in stage A 0.985 2380
H/W comp. in stage B 0.980 3400

Next, an optimization problem can be set up, depending on the goal of the

decision-making process. A formulation of the optimization problem considered is

max R s = f { R , x) (4.60)

subject to

{Citrùktj -f ' kxj < bi (4.61)

With the data given in Tables 4.3 and 4.4, the problem was solved by the

randomized Hooke and Jeeves method and the branch-and-bound method. The

optimal solution, shown in Table 4.5, was obtained. The optimal solution indicates

that stage B needs two components to optimize the system and enhances the system

reliability up to 0.9814 from 0.9639. The results of this optimization should serve

as an important input for the decision-making process.

www.manaraa.com

83

Table 4.4: Data for a mixed system example

stage A stage B

a,b 0.0093, 138.37 0.023, 64
a,(3 0.985, 0.120

1, 1
Ci.Cg 48, 40

h 100,000
k k=0.3 for redundancies
s 900

Table 4.5: Optimal solution

1 stage 1 stage 2

2% 1 2

Ri 0.9970 0.9965
cost 61,000 30,000

total cost 100,000

Rs 0.9814

www.manaraa.com

84

5 SOFTWARE QUALITY MANAGEMENT

Software technology has been criticized by dissatisfied users for its poor quality,

cost overruns, and late delivery. It has been recognized that the modern software

development methodologies, such as structured programming, structured analysis,

structured design technique, and others, can hardly solve these problems. The main

purpose of this chapter is to suggest protocols to handle these problems of software

development by applying statistical quality control to every phase of the testing

cycle. Today, management in the software industry knows that despite the most

painful efforts to control product quahty, variation in product quality is unavoid

able. Through the use of process control techniques, such as statistical control

charts, unusual variations in the software development process can be controlled

and reduced.

Finding faults after the failure occurrence can at least prevent software with

low reliability from plaguing users, but this is not what statistical software qual

ity control is all about. The statistical software quality control affects not only

the end product but also its process. It involves new practices, dealing with new

personnel, learning new forms of communications, and providing a new concept of

development. To develop high-quality software efficiently, the statistical software

quality control procedure must be planned, with each specified step related to a

www.manaraa.com

85

development activity.

The software testing process is not exhaustive but instead is more represen

tative of a sampling process. If our testing process only observes portions of the

entire population and removes only the discovered faults among the latent faults,

the software testing process is fundamentally the same as the statistical sampling

process of manufacturing.

By use of Cho's SIAD (Symbolic Input Attribute Decomposition) [12] random

test input for statistical quality control can be obtained. Cho defines SIAD as a

tree element, representing the input domain of a software entity arranged in a linear

list with the structure preserved by a set of tree symbols for random sampling.

The SIAD tree represents the input domain of a piece of software in a form that

facilitates construction of random test input units for producing random product

units for quality inspections. Four types of SIAD trees have been developed: regular,

weighted, ruled, and network.

It is the intention of this study to provide a guideline or a standard procedure for

using statistical quality control, to find the outcomes of variation, and to identify

their causes in software development. The proposed process of software quality

control may not be very radical but more a formalization of quality control practices

on the software development and recording of them in a way that allows developers

to know what they are doing and why they are doing it.

The proposed process of software quality control is depicted in Figure 5.1 and

steps involved with software quality control are; - •

• Description of software quality variation outcome

www.manaraa.com

86

• Data collection design

• Data charting design

• Concurrent data collection and charting

• Variation analysis (Interpretation)

• Cause identification

• Cause elimination

5.1 Review on S IAD Trees and Input Domain Reliability Model

5.1.1 S IAD tree

Up to 50 percent of the requirements for software development never get ad

dressed in a proper manner in the industry. Specifically, in current software devel

opment practice, test requirements are missing from the requirements specification.

Software engineering (development) requirements, software requirements, test re

quirements, and documentation requirements are four parts of necessary specifica

tion requirements.

After identifying the software engineering goals and principles, the detailed

input, output, and processing requirements should be specified. These require

ments are equivalent to raw materials, industrial processing, and product design

requirement in the manufacturing industries. One of the way to identify the input

requirements is using a convenient form called the SIAD (Symbolic Input Attribute

Decomposition) tree for software design and test design.

www.manaraa.com

87

I

CHART
DESIGN

DATA
COLLECTION
DESIGN

QUALITY
VARIATION
OUTCOME
DESCRIPTION

SPECIFICATION PHASE DESIGN PHASE

DATA
COLLECTION

CHARTING

CAUSE
ELIMINATION

VARIATION
ANALYSIS

CAUSE
IDENTIFICATION

TEST PHASE

Figure 5.1; Software quality control process

www.manaraa.com

88

The statistical quality control begins by taking random sampling from input

domain which has been specified by the SIAD tree. Four types of SIAD trees have

been developed by Cho so far: regular, weighted, ruled, and network.

5.1.1.1 Regular SIAD tree Figure 5.2 shows an example structure. The

symbols A, B, ..., U are called the tree elements. A tree symbol in Table 5.1 shows

the relationship of an element to other elements. A tree so arranged is a regular

SIAD tree, as each element is index column. An SIAD tree is used a tool for

describing the input domain of a piece of software and as a basis for construction

of test input units using random sampling, which makes it possible to apply the

principle of statistical quality control.

A set of random numbers between 1 and N is produced using a random number

generator. The element with its index equal to the random number is selected. Say,

two elements are to be taken from the tree using the random numbers 3 and 8. The

elements D and L are drawn for constructing the test input unit. An element is

tested with all other relevant elements by way of tree symbols. Table 5.2 shows the

list of relevant elements with each sampled element. This listing gives a meaningful

description of each sampled element for guiding test input unit design.

5.1.1.2 Weighted SIAD tree A weighted SIAD tree is identical to a reg

ular SIAD tree, except that each tree element in the weighted SIAD tree is indexed

with selected weights or multiple indices. Table 5.3 shows an example of a weighted

SIAD tree modified from the regular SIAD tree shown in Table 5.1. With the control

of weights, different tree elements can have different probabilities of being sampled

for test input unit construction.

www.manaraa.com

89

Figure 5.2: A tree structure

Table 5.1: A regular SIAD tree

Index Tree Symbol Tree Element

1 A
2 -^1,1 B

3 D

4 ^1,1,2 E

5 ^1,2 C

6 ^^1,2,1 F

7 -^1,2,2 G (numerical)

8 -^1,2,2,1 L (lower bound)

9 ^1,2,2,2 U (upper bound)

www.manaraa.com

90

Table 5.2: Test element

Index Tree Symbol Tree Element

1 A
2 B

3 -^1,1,1 D

1 A
5 ^1,2 C

7 -^1,2,2 G

8 '^1,2,2,1 L

Table 5.3: A weighted SI AD tree

Weight Index Tree Symbol Tree Element

2 1-2 A
4 3-6 -^1,1 B

8 7-14 -^1,1,1 D

6 15-20 -^1,1,2 E

10 21-30 -^1,2 C

2 31-32 ^1,2,1 F

5 33-37 -^1,2,2 G (numerical)

12 38-49 '^1,2,2,1 L (lower bound)

2 50-52 '^1,2,2,2 U(upper bound)

www.manaraa.com

91

5.1.1.3 Ruled S IAD tree A ruled SIAD tree is similar to a regular SIAD

tree, except that rules for using the inputs are incorporated into the tree. The

rule index and subindex columns are added to regular SIAD tree. These rule index

columns specify the general restriction of each tree element.

5.1.1.4 Network SIAD tree The network SIAD tree can be used for ap

plications in which the regular, weighted, and ruled SIAD trees cannot conveniently

represent the software input domain. Such applications include operating system,

communication networks, and compilers. Using the network SIAD tree, test input

units can be constructed systematically for testing the syntax entity by generating

a random number of elements.

5.1.2 Input domain reliability model

5.1.2.1 Nelson model Nelson [51] has derived a statistical basis for soft

ware reliability assessment based on error correlation with program structure. Data

sets are used to execute the program structure. Each specific input data set pro

ceeds through a sequence of segments, with a branch to a new segment taking place

at exit of each segment. The sequence of segments in the execution of the program

is called a logic path of the program.

For each input data set, the program specifies a computational process by

means of which a computer program can computer the function value which the

computable function assigns to that input data set. Assuming that inputs are se

lected independently according to some probability distribution function, the func

www.manaraa.com

92

tion becomes

R { i) = [i?(i)r = {RY (5.1)

where R = -R(l). The reliability R can be defined as follows:

i? = 1 — lim —— (o.2)
n^oo n

where n is the number of runs and my is number of failures in n runs. This is the

operational definition of software reliability of one run.

In the operational phase, if errors are not removed when failures occur, the

probability of experiencing k failures out of M randomly selected runs follows a

binomial distribution.

Pk =

(\
[1 - R { l) f y R { l) y ^ ^ - ' ' . (5.3)

\ ^ /

During the testing phase, a sequence of M tests are selected randomly from the

input space without repeating the same test. Then the probability of k failures out

of M runs follows a hypergeometric distribution.

If a sequence of k runs are not selected randomly from the operational profile,

R(l) may be different for each run. The maximum likelihood estimate of R(l) can

be obtained by running some test cases. It can be expressed as

^(1) = 1 ^ (3-4)

where Fi is the number of test cases that cause failure and Nf is the number of

test cases. Since the number of elements in the input space is a very large number,

the number of test cases has to be large in order to have a high confidence in

estimation. To simplify the estimation of R(l), Nelson modifies the above basic

www.manaraa.com

93

model by assuming that the input space is partitioned into m sets. As test cases

are selected from each partition and all the errors from the test cases are removed,

the reliability of one run can be formulated as

-R(l) = -/i) (5.5)
i

where is the probability that an input is from partition i and is the probability

that an input from partition i will cause failure. The values of /j's are given by

Nelson for a quick estimation of the software reliability.

5.1.2.2 Input domain based Stochastic model The input domain based

Stochastic model proposed by Ramamoorthy and Bastani [54] starts from the as

sumption of reliability growth models. Inputs are selected randomly and indepen

dently from the input domain according to the operational distribution. This is a

very strong assumption and will not hold in general. The relaxed assumption for

general growth model is that input are selected randomly and independently from

the input domain according to some probability distribution (which can be change

with time).

This means that the effective error size varies with time even though the pro

gram is not changed. This permits a modeling of the testing process. Unlike the

failure rate model which keeps track of the failure rate at failure times, this model

keeps track of the reliability of each run given a certain number of failures have

occurred.

Let

j number of failures experienced

www.manaraa.com

94

k number of runs since the failure

T j { k) testing process for the run

Vj(k) size of residual errors for the run

X j error size under operational inputs

f(Ty(k)) severity of testing process

Then

i=l
(5.6)

In the above equation, let

f { T j { k)) = 1.

The testing process is assumed to be identical to the operational environment. Then,

= ̂ j - 1 - ̂j -

Intuitively, errors which are caught later have a smaller size than those which are

caught earher. However, this is true only in a probabihstic sense. This can be

modelled by requiring that

4 -

Therefore,

R A k) = £[(1 - A,)«^

k

\ ' /

k f

E

www.manaraa.com

95

5.2 Software Quality Control Process

5.2.1 Description of software quality variation outcomes

The goal of software quality control is to control and, eventually, reduce the

unusual variation in the software development process. The first step in the software

quality control process is to describe the software quality variation outcomes. The

software quality variation outcomes are direct indications of abnormalities observed

in statistical control charts. These outcomes of variation should be distinguished

from the causes of variation. These outcomes are the possible consequences of causes

rather than causes themselves. It is very important to enumerate and specify all

outcomes of variation before the data collection design phase. Without a specific

purpose in mind or a complete understanding of how the data are to be used,

data collection and data analysis are not meaningful. A complete understanding

of the outcomes of variation allows more effective use of statistical quality control

techniques and makes the elimination of variation easier.

A list of possible outcomes of variation of software development is subjective.

The following all outcomes of variation may not be applied to all software, nor be

complete in the sense of representing all software projects. A historical record of

quality control analysis on quality variations and a careful analysis on the quality

control charts of software under development help managers to investigate more

outcomes of variation. Suggestions on the study of outcomes of variation follow:

• More-than-error-prone module: Each module has a different structure, a dif

ferent algorithm, a unique function to perform, and it is developed by a dif

ferent group of people. Therefore, each software module has a different size

www.manaraa.com

96

and distribution of errors. As module testing goes on, some modules never

get better; testing creates as many new faults as it debugs. It is desirable to

identify software modules that are behaving in significantly different ways.

More-than-error-prone personnel: Since each module has a different func

tion to perform and each software developer has a different educational back

ground, a certain type of module may not be suitable for a certain developer.

It is necessary to know who tends to create more errors than others in which

type of module. Manager may want to assign that personnel to other type of

module.

Near out of control system: When 1) any serious logic error occurs in the pro

gram structure, 2) the software does not fit the system's external specification,

or 3) the system's initial objectives are misinterpreted, a few adjustments to

the software system will not satisfy the user's requirements. Management's

attention is required.

Slow response: A software system may response more slowly than expected

to a certain type or amount of input data. Slow response may require the

whole module or system to be rewritten with a new algorithm or a different

software language. This phenomenon can happen in any testing stage.

Unusually low failure rate: Gardiner and Montgomery [21] pointed out that

an unusually low failure rate could be a potentially troublesome situation.

This is also a sign of system variation. It is the indication of either better

quality or application of an ineffective or insufficient testing method. Again,

management's attention is required.

www.manaraa.com

97

• Unusually long bug-elimination time: Examination and study of statistical

data on fault elimination time should be conducted. Some faults may be easy

to detect but not necessarily easy to collect them. Some faults may behave

the other way. It might be useful to find the correlation between the number

of bugs eliminated and the time spent to eliminate them. These statistic helps

the supervisor not only to find unusual variations in the bug-elimination phase

but also to predict the total elimination time required for the given initial

number of bugs.

• others

5.2.2 Data collection design

Once the software quality variation outcomes are specified, a quality-related

data collection should be planned on the basis of each quality variation outcome be

cause a small or moderate amount of intelligently collected data is worth more than

a ton of less intelligently collected data. The purpose, methods, and tools of test

ing change throughout the various phases of the software development. The range

of techniques in testing is also extremely broad starting from a syntax-checking

within the compiler to design review where the specifications and requirements are

tested. The sequence (stage) of testing progress is also numerous. First of all, each

software module is independently tested in module testing stage. Syntax-checking,

comprehensive checking, various stress points checking, and extremes of the range

of variables checking are the variety of module testing. Next, the program structure

and the interfaces among these modules are checked in integration testing stage.

Next, the complete software system of which modules are interconnected is

www.manaraa.com

98

tested under the simulated user environment in the system testing stage. At last,

the acceptance test is conducted to check the requirement of software system. In

this stage, the developer wants to demonstrate the absence of error, in other words,

to convince the purchaser that how good the software is. Meanwhile, the user wants

to see the presence of error (i.e., how bug-free software is under the unusual cases).

The design of data collection should be done based on each quality variation

outcome of interest, not based on the stage of testing or the methods of testing

because the outcomes of quality variation are the facts that the development team

wants to detect. The design of data collection could be unique for each quality

variation outcome of interest. On the basis of the quality variance outcome, the

following questions should be answered. Some of the questions that need to be

investigated are:

• which data should be gathered

• how data should be collected

• who should gather data

• when data should be collected

• how much data should be collected

5.2.2.1 Which data should be collected The type of data collected

depends on the goal of software quaHty control (e.g., the outcomes of variation).

The followings are some examples of data types based on its outcomes of variation.

1. More-than-error-prone module

If one of the goals is to detect more-than-error-prone module, it is rational to

www.manaraa.com

99

collect failure rate (e.g., number of faults detected per 100 program lines) per

quality measure for all modules. Here, the quality measure is the number of

test cases executed.

When data are collected based on time-domain model, the quality measure

becomes the execution time for debugging.

2. More-than-error-prone personnel

Failure rate (e.g., number of faults discovered per 100 lines) per quality mea

sure (the number of test cases executed) is collected for all development per

sonnel.

3. Near out of control state system

Failure rate (e.g., number of faults discovered per 1000 lines) per quality

measure is also collected starting from the integration testing stage. Here,

the quality measure could be number of test cases executed, calendar time, or

execution time.

4. Slow response

Response rate (e.g., response time per 1000 line) per volume of data for all

modules or system is collected.

5. Unusually low failure rate

All data types described above are considered as data for the detection of

unusually low failure rate outcome.

6. Unusually long bug-elimination time

Fault collection time of each fault can be a good candidate for the analysis of

www.manaraa.com

100

variation in bug-elimination process.

5.2.2.2 How data should be collected Data should be collected in a

format that makes it immediately useful and easy to analyze. Data should be

gathered on carefully designed check sheets so that the collected data doesn't need

to be transferred to another form.

5.2.2.3 Who should gather data Data should be collected those indi

viduals most familiar with the process of interest. They should be properly trained

in data collection techniques and provided with adequate time and resources. Fail

ure identification personnel and failure correction personnel belong to this category.

These personnel should be well trained to avoid any misrepresenting data.

5.2.2.4 When data should be collected

• specification phase

• design phase

• testing phase

- module testing

- integration testing

- system testing

- acceptance testing

Table 5.4 illustrates the relationship between testing stage and the outcomes of

variance. The outcomes of variance should be observed under the corresponding

www.manaraa.com

101

testing phase (the one which has the check point). For example, it is better to find

more-than-error-prone module in module testing phase. Finding more-than-error-

prone module after module test is not desirable.

5.2.2.5 How much data should be collected What is the optimal sam

pling size? How much data should be corrected? These questions have been a big

issue in statistical quality control. In software development, data collection basi

cally lasts the end of software life. However, the size of data and the amount of data

collected depends on the goals and objectives of the study, the degree of precision

designed, and available resources. The optimal size and amount of sampling which

can achieve the best results in statistical software quality control should be further

investigated. Moreover, when an error is discovered and corrected, the software is

actually changed. Because of the imperfect debugging, the software may be intro

duced new errors. In the case like this the issue, here, is whether all previous test

case should be repeated or not. Further investigation is also required.

5.2.3 Data charting design

In the previous software quality variation description phase, the list of possible

outcomes of variation are not completed. Since these outcomes of variation in

software development are subjective, hunting down other outcomes of variation

subject to current software is an inevitable step.

Charting data into various statistical quality control charts helps developers

not only

1. to get statistical evidence of variation, but also

www.manaraa.com

Table 5.4: Outcomes vs. I*liases

more than more than near out of slow unusual unusual long
error prone error prone control response low elimination

module personnel state system failure rate time

module test y y v/ y y
integration test V y y y y .

system test y /̂ y y
acceptance test y

www.manaraa.com

103

2. to find more outcomes of variation.

First of all, simple histograms, time plots, and other scatter plots so called

preliminary control charts are invaluable tools to hunt down outcomes of variation

and to eliminate causes of variation. Moreover, these plots give early signal of

variation and check the correlation of variables under study.

1. histogram:

Making specifications on a histogram is a very effective way of communicating

to development personnel and fault-discovery personnel what needs to be done

to improve the performance of software development. Eventually, histogram

gives a new idea to eliminate the source of variation to improve the system.

Ex) Pareto diagram: focuses attention on biggest problems first.

2. time plot;

Constructing a simple time plots before constructing statistically controlled

charts might hint at the reliability of system. The scatter represents more

unreliability as more time goes.

3. scatter plot:

Scatter plot is the simplest way to study correlation between two variables.

The type of data collected for each outcome of variation was already discussed.

Correlation of two variables (failure rate vs. the number of test batch) should

be checked to construct the statistical quality control chart.

Then, ignoring the number of test cases executed, divide the data into con

venient subgroups and plot a standard control chart for failure rate. In other

www.manaraa.com

104

words, the data of failure rate should be re-examined by changing the sample

size.

Second, the statistically controlled regression control chart should be con

structed and analyzed to find the evidence of unusual variation and control the

software process. The failure rate (number of fault discovered per a group of lines)

collected as the testing continues can not be a linear function of the number of test

units executed over the entire range of testing phases (see Fig. 5.3). In this study

for simplicity the correlation of these two variables is assumed to be exponentially

distributed. As the testing continues, the number of faults discovered tend to de

crease. A collection of failure rate points during software testing phase shows the

possibility that something other than the standard Shewhart control chart might

be desirable. Therefore, the only reasonable choice among the statistical control

charts in this case is the regression control chart.

For instance, after a glance at simple histogram or time plots, a suspicion of

the existence of variation were found in some modules. Software development team

wants to find stronger evidences on the existence of more-than-error-prone module

(if there is any) during module testing. The constructed regression control chart is

more carefully examined, especially for those of modules which showed a suspicion

of the existence of unusual variation.

Assuming linearity (after the transformation of variables), the line which best

fits trended data, such as those in Fig. 5.4, may be found by the statistical technique

of least squares. This is nothing more than a device for fitting m and b in the straight

line equation, y = mx + b. With sets of ordinate values (y's) and abscissa values

www.manaraa.com

105

(x's), m and b may be found from

n { E x y) - { E x) { E y) , .

, . (Z z) (Z z 2 /) - (Z ï /) (E z 2)

E ») 2 - n (E « 2)

where n = the number of pairs oî x , y values.

Here, x becomes the logarithm of failure rates (i.e., the number of faults dis

covered / a group of line / the number of test cases executed) and y becomes either

the logarithm of time periods or that of batches number of testing units. With the

equation of the straight line established, the standard error of estimate (cr) is found

to use in calculating control limits.

^ ̂ (l/n)E[(a; -a!)(y-y)]
(TxCTy

cr = cry\J\ - (5.10)

The only remaining task to complete the control chart in Fig. 5.4 is to decide

how to put control limits around a line of regression. The decision is closely related

to the cost of system (or module) rejection. No solution necessarily universally

correct. However, a general rule could be that module testing phase has more tight

control limits than integration and system testing phase do.

Perhaps, 2cr or 3cr control limits with tight warning limits may be suitable

for module test. Meanwhile, 3(T or 4cr control limits with loose warning limits are

justified for integration and system testing phases. Basically, these judgement can

be made based on historical records or the expectation of quality of underdeveloping

software system.

www.manaraa.com

106

J I J L
1 2 3 4 5 6 7 8 9 1 0

x' = NUMBER OF TEST CASES EXECUTED

Figure 5.3: Regression line

3ct CONTROL LIMIT

X = log X'

Figure 5.4: Transformed regression line

www.manaraa.com

107

5.2.4 Concurrent data collection and charting

It should be pointed out that the goal of software quality control is not only

to find and locate these software faults, but also to find and reduce the sources of

these variation's outcomes. So that, the quality of both underdeveloping software

and future software can be improved. Supervisor keeps in mind that variation in

a measurement comes from many sources and should working together with fault-

correction personnel and fault-discovery personnel to find better way of detecting

any quality unusual variation.

5.2.5 Variation analysis

A simple point that strayed beyond preset boundaries (limits) is interpreted as

an action signal. In other words, the point beyond boundaries is an evidence that

something is wrong.

5.2.6 Cause identification

No matter how carefully specified, designed, and developed software is, the

natural variation (sometimes called background noise or chance causes) will present.

The natural variation is the result of "nonassignable" causes. The causes that can

be identified or assigned is called assignable causes. The assignable causes can

create the unnatural variation. A process that is operating with only nonassignable

causes of variation present is said to be in statistical control.

The final objective of this chapter is to detect and remove these assignable

causes not nonassignable cause. These unnatural variations may be divided into

two types:

www.manaraa.com

108

1. relatively simple: due to a single assignable cause

2. relatively complex: combination of more than two assignable causes

In the former case the cause of variation can usually be found without signif

icant effort. In the latter case major variation should be traced by stratifying or

segmenting a data set along the lines of possible sources of variation. The following

methods of separating data [30] are used in engineering studies:

• Method A: single break down

• Method B: elimination of variable

• Method C: rearrangements of data

• Method D: designed experiments

Followings are the type of assignable causes of variation and the tools which helps

to hunt down the assignable cause of variation.

The assignable cause of variation are:

• Assign new employers (developer or designer, etc.) to an underdeveloping

software without sufficient understanding of current software

• insufficient and incorrect specifications

• misunderstand specifications

• insufficient and incorrect testing

• failure to measure the effects of assignable causes and to reduce them

www.manaraa.com

109

• delays in reporting results of analysis

• improper usage of algorithm

• improper usage of language

• inadequate monitoring of software process

• improper classification of causes (assignable, nonassignable)

• incorrect information about the data collection form

• insufficient instruction on the new data collection form

• others

More suspected assignable causes need to be enumerated to trace down the

causes effectively. However, it is not possible to write down all possible assignable

causes because the characteristics of these variations are unpredictable, unnatural,

inconsistent, and nonhomogeneous. So, when any other evidence or suspicion of the

existence of assignable causes were found, separate the data according to suspected

sources.

Other tools that might help supervisor to hunt down the assignable causes are:

• fish-bone diagram

• cause and effect diagram

5.2.7 Causes elimination

Before the elimination of the assignable cause that is suspected as the cause

of unusual variation, determine whether the real cause have been found. After the

www.manaraa.com

110

elimination of the assignable cause, it is important to check the process returns to

stable state.

5.3 Use of Statistical Control Techniques

As Cho [12] claimed in his work, one of the most important design step that is

missing during the modeling phase in the current software industry is input descrip

tions. During requirement specification, the types of input data and the rules for

using input data should be specified and refined. To do this, we will use the SIAD

tree which will help not only to find the location of errors but also to construct the

quality control charts. The types of SIAD trees are regular, weighted, ruled and

network.

In the software development process, each phase of development should have

a quality goal or performance measure. The quality performance measure, first of

all, needs to be defined as a vector of quantitative measure based on important

variables that can be tracked over program operation time. The vector consists of

attributes such as failure intensity along with its confidence limits, failure removal

capacity, hardware-related software, and so forth.

Second, the statistically controlled r-chart, run-chart, p-chart and other re

gression techniques will be constructed and analyzed to monitor and control the

software process. Finally, the statistically controlled software system's performance

will be demonstrated and predicted in the immediately followed life-cycle phase.

This will relate to additional resource (e.g., computation time, failures, and per

sonnel) needed to achieve a specified goal, such as reliability, understandability,

efficiency, structure.

www.manaraa.com

I l l

5.4 Use of Fault Tree and Event Tree Analyses

Regardless of how refined and correct the product is, the degree of quality of

conformance achieved varied from one product unit to the next. The statistical

evidence of instability of the software development system should thus be carefully

examined. Hence, a standard and generic software development system will be

carried out by applying Deming's management philosophy.

It is obvious that the type of action required to reduce special cause of variation

is totally different from the action required to reduce common causes variation

from the system itself, and those common causes could be any or a combination of

possibilities.

• poor design of product

• poor design of software

• insufficient and incorrect specifications

• poor instruction and poor supervision

• insufficient and incorrect testing

• failure to measure the effects of common causes and to reduce them

• failure to provide programmers with information in statistical form that shows

them where they could improve their performance and the uniformity of the

product

• incoming materials (such as computer languages, existing software mathemat

ical packages) are not suited to the requirement

www.manaraa.com

112

o others.

According to Dr. Deming's experience [15], the main cause of most troubles

and the greatest possibility for improvement belong to the system not the workers.

For instance, slow response and numerical error may require the whole module to

be rewritten by use of a new algorithm. An event tree and fault tree analysis will

be used to identify the critical flaws in the software development, to distinguish a

special cause of variation from a common cause of variation, and to aid management

in taking the proper action required to reduce the given cause of the variation.

Consequently, this event tree and fault tree analysis reduces risk (e.g., high failure

rate) due to common cause failures. Risk analysis has shown that no matter how

small events are, they can be amplified to increase system failure. A cost factor

incurred in each branch of the above analysis will be estimated. Quantity and

variety of common causes will be determined.

www.manaraa.com

113

6 CONCLUSIONS

In this study, a new procedure bases on system optimization concept for im

proving software reliability has been provided. The software reliability-related cost

function and the reliability function of software redundancy with the common-cause

failure model have been investigated and provided. In the middle of the concur

rent coding and test phase, the system and component reliabilities are examined.

Since more information about the developing software, such as failure intensity or

failure rate, is readily available at this time, more accurate system and component

reliabilities can be reevaluated with updated data.

If the system and module reliabilities don't meet the reliabilities required, the

resources can be reallocated and the system optimization problem can be solved,

again with the updated data. A set of solutions along with determined decision

variables can be obtained. The management chooses a solution from among the new

multi-optimal solutions obtained. The decision to be made is whether to improve

module's reliabilities or to increase the number of redundancies of some modules

through manageable ways. This iteration continues until the current rehabilities

meet the requirement.

In the software quality management chapter, a standard procedure using sta

tistical quality control for eliminating the causes of variation and improving the

www.manaraa.com

114

quality of software has been provided. In the preliminary control charting phase,

the correlation of two variables based on input domain testing should be examined.

When the distribution of two variables can not be clearly identified, the data of

failure rate should be re-examined by changing the sample size. The simplest way

of doing this is to divide the data into several subgroups by ignoring the number of

test cases executed.

It is the management responsibility to detect all unusual variations and to

remove all assignable causes. The remaining variation must be left to nonassignable

causes, so that, the process remains in the state of statistical control.

A lot of work should be done in developing a good testing method. At least

the standardization of testing method should be done. There are over 80 software

reliability models proposed. However, many developers have claimed that none of

those software reliability models works very well. The author believes that many

software reliabihty models can effectively quantify the quality of software and have

proven their accuracy and effectiveness in the application of many mid-size soft

wares. The problem is not in the correctness of those software models but in the

collection of good quality data that is meaningful and sound in statistically. In

order to get quality data, a good testing method should be developed. The testing

method should be able to provide sound data consistently for any kind of software.

There is a question about the software reliability as being a good software

quality measurement. The traditional design techniques and testing methods are

too customized to get statistically sound data. Until there is a good testing method,

the quality of software may be quantified by use of other tools, say, the reliabihty

bypass models.

www.manaraa.com

115

As the extension of this study, reliability models for different configurations of

system can be derived. Cold standby redundant system and multi-version program

ming are good examples. The reliability model for cold standby redundancy can

be derived by modifying the Markov process discussed and that of multi-version

programming can be derived by use of probability theorem.

In both cases, the analytical system reliability function for generic N-component

should be evaluated. In the optimization problem formulation, both the available

resources and system parameters could vary over their expected range either because

of unexpected resource change or because of the nature of statistical uncertainties

of the estimated parameters.

The full set of perturbations can be ordered by investigating the sensitivity of

all responses to one parameter in a single iteration. Therefore, the major drawback

of the conventional perturbation method is that the same procedure has to be

repeated for every decision parameter. A second difficulty arises if an analytical

form of the system model is not readily available. In this case, the sensitivity

coefficients obtained from the perturbation method are only approximations.

The adjoint method is a promising alternative to the above dilemma. The

adjoint method requires a detailed system model, which is proposed in Chapter 4.

Once the detailed system model is fabricated, a single adjoint run is to be designed

to produce exact sensitivity coefficients for all input parameters.

This proposed adjoint method can

« provide the management quick response to check the robustness of the optimal

design of Task 1, which will also help reevaluate all possible outcomes,

• identify the critical parameters employed in the system optimization and cross

www.manaraa.com

116

examine the effects due to SIAD tree, fault tree, and event tree analysis

vided in Chapter 5, and

help maintain an "in-control" state for future software development.

www.manaraa.com

117

7 ACKNOWLEDGEMENTS

I would like to express my appreciation to many persons who assisted me in

this research and in the completion of my Ph.D. program. Dr. Way Kuo, my

major professor, deserves special recognition for his encouragement and guidance

throughout my research. Without his assistance, consideration, and patience, this

research never would have been accomplished. Without his expertise, insight, and

criticism, four invaluable papers which we have published never would have been

accomplished.

I also would like to thank my committee members: Dr. Howard Meeks, Dr. Vin

cent Sposito, Dr. William Meeker, Dr. Géraldine Montag, all of whom provided valid

criticisms and comments concerning my final dissertation. My special thanks go to

Dr. Montag for the opportunity to work under her on the course 'work measurement'

to broaden my experience in teaching and for professional growth while serving as

a teaching assistant. Many thanks to Dr. Yasuo Amemiya for his hospitahty and

valuable assistance.

Last, but most importantly, I want to acknowledge the members of my family.

First, I'd like to thank my parents for providing me with a lot of valuable encourage

ment and support throughout. This research would not have been possible without

my parents' dedication to my education.

www.manaraa.com

118

Next, I'd like to thank my daughters, Hanna and Min-sun, for never complain

ing about having a father who was frequently preoccupied. I can't say enough to

thank my wife, Ik-Ja. She was always there to give me what I needed most, care,

forgiveness, love. She has endured so much and asked so little. I do always love her

and dedicate this work.

To all of these, other family members, and other friends, I am most humbly

grateful.

www.manaraa.com

119

8 BIBLIOGRAPHY

[1] Aho, A. The Design and Analysis of Computer Algorithms. Addison-Wesley,
Reading, Mass., 1974.

[2] Akiyama, F. "An Example of Software System Debugging." IFIP Congress,
Ljubljana, Yugoslavia, 1971, 353-359.

[3] Barlow, R. and Scheuer, E. "Reliability Growth during a Development Testing
Program." Technometrics, 8, No. 1 (February 1966): 53-60.

[4] Barlow, R., et al., eds. Reliability and Fault Tree Analysis. Society for Industrial
and Applied Mathematics, Philadelphia, 1975.

[5] Basili, V. R. "Quantitative Software Complexity Models: A Panel Summary."
Proc. Workshop Quant. Software Models for Reliability, Complexity, and Cost:
An Assessment of the State of the Art, Oct. 9-11. IEEE, New York, 1979,
243-245.

[6] Basili, V. R. and Hutchens, D. H. "An Empirical Study of a Syntatic Complex
ity Family." IEEE Trans. Software Engineering, SE-9, No. 6 (1983): 664-672.

[7] Basili, V. R., Selby, R. W. and Phillips, T. Y. "Metric Analysis and Data
Validation across Fortran Projects." IEEE Trans. Software Engineering, SE-9,
No. 6 (1983): 652-663.

[8] Belady, L. A. "On Software Complexity." Proc. Workshop Quant. Software
Model for Reliability, Complexity, and Cost: An Assessment of the State of the
Art, Oct. 9-11. IEEE, New York, 1979, 90-94.

[9] Boehm, B. W. Characteristics of Software Quality. TRW and North-Holland
PubHshing Co., Amsterdam, The Netherlands, 1978.

[10] Brooks, H. " A Discussion of Random Methods for Seeking Maxima." Opera
tions Research, 6 (March 1958): 244-251.

www.manaraa.com

120

[11] Chen, E. T. "Program Complexity and Program Productivity." IEEE Trans.
Software Engineering, SE-4, No. 2 (1978): 187-194.

[12] Cho, C. K. Quality Programming. John Wiley & Sons, New York, 1987.

[13] Cooper, J. D. and Fisher, M. J. Software Quality Management. A Petrocelli
Book, New York, 1979.

[14] Coutinho, J. S. "Software Reliability Growth." IEEE Symp. Comp. Software
Reliability (1973): 58-64.

[15] Deming, W. E. Out of the Crisis. Massachusetts Institute of Technology, Cam
bridge, Mass., 1986.

[16] Dickson, J., Hesse, J., Kientz, A. and Shooman, M. "Quantitative Analysis of
Software Reliability." Proc. Ann. Reliability and Maintainability Symp., IEEE
(January, 1972): 148-157.

[17] Duran, J. W. and Wiorkowski, J. "Capture-recapture Sampling for Estimat
ing Software Error Content." IEEE Trans. Software Engineering, SE-7, No. 1
(1981): 147-148.

[18] Echhardt, D. E., Jr. and Lee, L. D. "A Theoretical Basis for the Analysis of
Multi-version Software Subject to Coincident Errors." IEEE Trans. Software
Engineering, SE-11, No. 12 (1985): 1511-1517.

[19] Endres, A. "An Analysis of Errors and Their Causes in System Program."
IEEE Trans. Software Engineering, SE-1, No. 2 (1975): 140-149.

[20] Freeman, H. and Lewis, P. M. Software Engineering. Academic Press, New
York, 1980.

[21] Gardiner, J. S. and Montgomery, D. C. "Using Statistical Control Charts for
Software Quality Control." Quality and Reliability Engineering International,
3 (1987): 15-20.

[22] Garfinkel, R. S. and Nemhauser, G. L. Integer Programming. John Wiley &
Sons, New York, 1972.

[23] George, J. S. and Wolverton, R. W. "An Analysis of Competing Software
Reliability Models." IEEE Trans. Software Engineering, SE-4, No. 2 (1978):
104-120.

www.manaraa.com

121

[24] Glass, R. L. "Persistent Software Errors." IEEE Trans. Software Engineering,
SE-7, No. 2 (1981): 162-168.

[25] Goel, A. L. and Okumoto, K. "Time-dependent Error Detection Rate Model
for Software Reliability and Performance Measures." IEEE Trans. Reliability,
R-28, No. 3 (1979): 206-211.

[26] Graham, R. M. Performance Prediction. Advanced Course on Software Engi
neering, No. 81. Springer-Verlag, New York, 1973, Chapter 4.

[27] Gupta, 0. K. and Ravindran, A. "Branch-and-bound Experiments in Convex
Nonlinear Programming." Management Science, 31, No. 12 (1985): 1533-1546.

[28] Halstead, M. H. Elements of Software Science. Elsevier, New York, 1977.

[29] Hammersley, J. M. and Handscomb, D. C. Monte Carlo Methods. Methuen,
London,1975.

[30] Handbook of Statistical Quality Control. Western Electric Co., Charlotte, North
Carolina, 1956.

[31] Hooke, R. and Jeeves, T. A. "A Direct Search Solution of Numerical and
Statistical Problems." J. ,4s50c. Comp. Mach., 8 (April 1961): 212-229.

[32] Huang, X. Z. "The Hypergeometric Distribution Model for Predicting the Re
liability of Software." Microelectronics and Reliability, 24, No. 1 (1984): 11-20.

[33] IMSL Library Reference Manual. International Mathematical and Statistical
Libraries, Inc., Houston, Texas, 1984.

[34] Iyer, R: K. and Valardi, P. "Hardware-related Software Errors: Measurement
and Analysis." IEEE Trans. Software Engineering, SE-11, No. 2 (1985): 223-
231.

[35] Jacoby, S. L. S., Kowalik, J. S., and Pizzo, J. T. Iterative Methods for Nonlinear
Optimization Problems. Prentice-Hall, Englewood Cliffs, 1972.

[36] Jelinski, Z. and Moranda, P. B. "Software Reliability Research." in Statistical
Computer Performance Evaluation, W. Freiberger, Ed., Academic Press, New
York, 1972, 465-484.

[37] Jensen, R. W. and Tonies, C. C. Software Engineering. Prentice-Hall, Engle
wood Cliffs, 1979.

www.manaraa.com

122

[38] Knight, J. C. and Leveson, N. G. "An Experimental Evaluation of the Assump
tion of Independence in Multi-version Programming." IEEE Trans. Software
Engineering, SE-12, No. 1 (1986): 96-109.

[39] Kuo, W. and Lin, H. H. "Taxonomy and Validation of Software Reliability
Model." ACM Computing Surveys, Submitted, 1987.

[40] Kuo, W., Lin, H. H., Xu, Z. and Zhang, W. "Reliability Optimization with the
Lagrange Multiplier and Branch-and-bound Techniques." IEEE Trans. Relia
bility, R-36, No. 5 (1987): 624-630.

[41] Lin, H. H. and Kuo, W. "Reliability Related Software Life Cycle Cost Model."
Proc. 1987 Annual Reliability and Maintainability Symp., 1987, 364-368.

[42] Littlewood, B. and Verrall J. L. "Likelihood Function of a Debugging Model for
Computer Software Reliability." IEEE Trans. Reliability, R-30, No. 2 (1981):
145-148.

[43] McCabe, T. J. "A complexity measure." IEEE Trans. Software Engineering,
SE-2 (1976): 308-320.

[44] McCammon, S. "Applied Software Engineering: A Real-time Simulator Case
History." IEEE Trans. Software Engineering, SE-1, No. 4 (December, 1975):
377-383.

[45] Miller, K. S. Linear Differential Equations. W. W. Norton and Company Inc.,
New York, 1963.

[46] Misra, K. B. "Reliability Optimization of a Series-parallel System." IEEE
Trans, on Reliability, R-21, No. 4 (1972): 230-238.

[47] Morey, R. C. "Estimating and Improving the Quality of Information in a MIS."
Communications of the ACM, 25, No. 5 (1982): 337-342.

[48] Motteler, Z. C. Introduction to Ordinary Differential Equations. Prindle, Weber
and Schmidt, Boston Mass., 1972.

[49] Mourad, S. and Andrews, D. "The Reliability of the IBM MVS/XA Operating
System." Proc. Int'l Conf. on Fault-Tolerant Computing, 1985, 93-98.

[50] Musa, J. D., lannino, A. and Okumoto, K. Software Reliability: Measurement,
Prediction, Application. McGraw-Hill, New-York, 1987.

www.manaraa.com

123

[51] Nelson, E. "Estimating Software Reliability From Test Data." Microelectronics
and Reliability, 17, No. 1 (1978): 67-74.

[52] Okumoto, K. "A Statistical Method for Software Quality Control." IEEE
Trans. Software Engineering, SE-11, No. 12 (1985): 1424-1430.

[53] PORT Mathematical Subroutine Library. AT&T Bell Laboratories, Inc., Mur
ray Hill, New Jersey, 1984.

[54] Ramamoorthy, C. V. and Bastani, F. P. "Software Reliability-Status and Per
spectives." IEEE Trans. Software Engineering, SE-8, No. 4 (1982): 354-371.

[55] Ramzan, M. T. "Seeded Bug Volume for Software Validation." Microelectronics
and Reliability, 23, No. 5 (1983): 981-988.

[56] Reifer, R. J. "Software Failure Modes and Effects Analysis." IEEE Trans. Re
liability, R-28, No. 3 (1979): 247-249.

[57] Rubey, R. J., Dana, J. A. and Biche, P. W. "Quantitative Aspect of Software
Validation." IEEE Trans. Software Engineering, SE-1, No. 2 (1975): 150-155.

[58] Schick, G. J. and Wolverton, R. W. "An Analysis of Competing Software Reli
ability Models." IEEE Trans. Software Engineering, SE-4, No. 2 (1978): 104-
120.

[59] Schick, G. J. and Wolverton, R. W. "Achieving Reliability in Large Software
System." Proc. Annual Reliability and Maintainability Symposium, 1974, 302-
319.

[60] Sharz, S. M. and Wang, J. P. "Introduction to Distributed-Software Engineer
ing." Computer, 21 (Oct. 1987): 23-30.

[61] Shooman, M. L. Quality Programming. McGraw-Hill, New York, 1972.

[62] Shooman, M. L. Probabilistic Reliability: An Engineering Approach. McGraw-
Hill, New York, 1968.

[63] Shooman, M. L. and Laemmel, A. "Statistical Theory of Computer Programs:
Information Content and Complexity." Digest of Papers, Fall COMPCON'77,
IEEE, New York, Sept. 6-9, 1977, 341-347.

[64] Trachtenberg, M. "Order and Difficulty of Debugging." IEEE Trans. Software
Engineering, SE-9, No. 6 (1983): 746-747.

www.manaraa.com

124

[65] Troy, R. and Roman, Y. "A Statistical Methodology for the Study of the Soft
ware Failure Process and Its Application to the ARGOS Center." IEEE Trans.
Software Engineering, SE-12, No. 9 (1986): 968-978.

	1989
	Software reliability optimization by redundancy and software quality management
	Dong Hae Chi
	Recommended Citation

	tmp.1415660764.pdf.RZC67

