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1 GENERAL INTRODUCTION 

1.1 Abstract 

This study investigates both the trade-offs among system reliability improve

ment, resource consumption, and other relevant constraints, and the application of 

statistical control methods to monitor variations. A process for reliability-related 

quality programming is developed to fill existing gaps in software design and devel

opment so that a quality programming plan can be achieved. A software reliability-

to-cost relation is developed both from a software reliability-related cost model and 

software redundancy models with common-cause failures. The software reliability 

optimization problem will be formulated into a mixed-integer programming problem 

and solved by a branch-and-bound technique. 

A procedure will be developed to identify, define, develop, and demonstrate a 

quality performance measure to improve system operation that is based on statis

tical control methods. Despite the most painful effort to control product quality, 

variation in product quality is unavoidable. Through the use of process control 

techniques, such as statistical control chart, unusual variations in the software de

velopment process can be controlled and reduced. 



www.manaraa.com

2 

1.2 Research Problem 

Software technology has been criticized for its high cost, low reliability, and 

frequent delays. Forty percent of software development costs are spent in testing 

to remove errors [9] and assure high quality, but in fact, high cost and delays are 

still cited as the results of low reliability. By focusing on the overall system, we 

can improve low system reliability (1) by debugging the program or (2) by adding 

redundant components. Module testing, integration testing, and field testing rep

resent the first approach, while N-version programming, recovery block, redundant 

data structure, and redundant data storage are examples of the second approach. 

The techniques of using more reliable components and adding redundancies to 

improve system reliability have been widely used in hardware systems. Nevertheless, 

software differs from hardware in terms of failure causes and reliability modeling 

measures. Therefore, the conventional techniques for modeling hardware systems 

cannot be directly applied to software performance modeling. Because many sys

tems include a significant proportion of software and because over sixty percent of 

the system life-cycle cost has been spent on software-related factors, there is an 

urgent need to evaluate the performance of integrated software modules to meet 

optimal design specifications. This is, however, a sophisticated task because 

• the system has many restrictions, such as cost, manpower, management, 

scheduling, processing time, computer memory, facilities 

• no methodology addresses and monitors software quality and development 

• no dynamic optimization procedure exists to locate solutions for a complicated 

mixed-integer-type programming problem 
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• no systematic and generic protocol can be used to evaluate and feed back 

performance of quality programming. 

1.3 Objectives of The Research 

The objective of this study is to perform optimally a complete software life-

cycle analysis incorporating the principles of optimization and statistical quality 

control. The research consists of the following two topics. 

1. Optimal Allocation of Software Reliability and Redundancy 

To integrate software components into an optimization problem, The following 

issues must be investigated. 

• provide reliability-related quality programming process 

• predict system performance 

• develop the software reliability-related cost function 

• develop the software redundancy model with common cause failures 

• formulate the software reliabiUty optimization 

• derive other reliability-related resources function 

• optimize reliability-redundancy allocation 

2. Software Quality Management 

Through the use of process control techniques, the variation in the software 

development process can be controlled and reduced. To set up a procedure to 

identify, define, monitor, and control software quality, the following must be 

investigated. 
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• plan the statistical software quality control procedure with each specified 

step related to a development activity 

• investigate input domain testing process 

• use of statistical quality control techniques 

• specify the software quality variation outcomes 
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2 AN OVERVIEW OF QUALITY PROGRAMMING 

Quality programming is a means to perform optimally a complete software 

life-cycle analysis incorporating the principles of optimization and statistical quality 

control. A diagram of the reliability-related quality programming process is depicted 

in Figure 2.1. In the following, those development phases of Figure 2.1 that are not 

covered in current software practice will be discussed in order to perform optimally a 

complete software life-cycle analysis that incorporates the principles of optimization. 

2.1 Modeling 

Modeling is the first and most important step in quality programming devel

opment process. In modeling phase, an accurate picture of the problem must be 

developed to gain as broad a perspective of the problem as possible at the outset. 

All aspects of input, output, and processing must be studied carefully to prevent 

the original problem from being destroyed by misleading opinions, considerable ir

relevant information. 

It is the study of all the factors necessary to understand the problem, to gen

erate a quality solution, and to allow the use of statistical quality control. A model 

for software development is like a model performed in the manufacturing industries. 

The modeling factors discussed by [12] are: 
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Modeling of inputs 

- types of inputs 

- characteristics of each type of input 

- rules for constructing inputs 

- sources of inputs 

Modeling of outputs 

- output description 

- output prototype design 

- output strategies 

- output quality planning 

Modeling of software 

- process description 

- rules of using inputs 

- methods of producing outputs 

- data flows in a process being automated 

- process control 

- software characteristics 

- methods of developing the software system 
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Figure 2.1: A process for reliability-related quality programming 
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2.2 Requirement Specification 

The second step in a quality programming development process is the require

ment specification. In this phase, the problem should be analyzed by a step-by-step 

procedure and documented in detail to cover all necessary requirements and to 

obtain detailed qualitative and quantitative characteristics of these inputs and out

puts. 

The result of the requirement specification phase of quality programming de

velopment must be a formal document that completely describes the solution, using 

both words and diagrams. This document can be used to communicate to the pro

grammer, software designer, test designer, system optimizer, failure-identification 

personnel, failure-correction personnel, user, and other concerned parties. 

The volume of the document varies dramatically from software to software, 

depending on system complexity, size, and contractual requirements. The require

ment specification activity includes software requirements, test requirements, and 

documentation requirements [12]. 

2.2.1 Software requirement 

In the modeling phase it was sufficient to understand and identify the input, 

processing, and output quantities. The next software requirement phase should 

specify the detailed input, processing, and output requirements for design of the 

software. In conventional practice, the requirements for the following equalities has 

been poorly or insufficiently specified. 

• Input description is the nature or extent of data 
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• Definition of product unit is the user's detailed output requirement 

• Product unit defectiveness is the criterion of acceptability. 

The above requirement specifications should be stated carefully by the statis

tical quality control. 

2.2.2 Test requirement 

specification of test methods The test methods are regular test, weighted test, 

boundary test, invalid test, and special test method. A combination of the 

methods is required to conduct the tests. 

statistical inference requirements The user should require that proper data be 

collected in order to perform the necessary statistical tests. 

statistical sampling methods The user should specify the most appropriate sta

tistical sampling methods consistent with the product unit definitions devel

oped as part of the modeling activity. A sampling process for estimating the 

defective rate of the product unit and another sampling process for accepting 

the software product unit should be used. 

software acceptance criteria How good the product unit population must be 

and how thorough the system testing must be to satisfy the developer and the 

user that the software is acceptable and has been sufficiently tested. 

The above factors should be carefully addressed and specified for both sys

tem test requirement and module test requirement. By doing this, both user and 

developer would have statistical evidence that quality is built into the software. 
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2.2.3 Documentation requirement 

The type of documents should be identified and specified in detail. The product 

description, in textual or blueprint form, written instruction (process description) 

are fundamental tools to help ensure the understandability and quality of software. 

2.3 System Performance Prediction 

Use of data from the past history of similar environments can help predict the 

results of future experiments. The data, called the indices of -performance, should 

be provided in order to conduct system performance prediction. The management 

realizes that all production personnel are part of the system and so are their prob

lems. Therefore, an effort to collect the indices of performance should be done in 

advance to improve future product. On the basis of the past indices of performance, 

the system failure intensity or system failure rate under a specified condition can 

be predicted. 

2.4 System Pre-optimization 

The number of redundancies of each subsystem needs to be determined before 

the design phase begins; this is because all redundancies are supposed to developed 

independently from the design phase. By the use of data estimated from the system 

performance prediction phase, the system optimization problem can be formulated 

and solved. The procedure of pre-optimization is the same as that of main system 

optimization which is conducted in the middle of coding, testing, and management 

phase. A solution obtained at the system pre-optimization phase gives management 
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a general idea of system design. 

2.5 Concurrent Software Design and Test Design 

The concurrent development for both software design and test design is advan

tageous because it allows cross-checking of the designs as early as possible and it 

can reduce the development time considerably. 

2.5.1 Software design 

The designer must keep in mind the software engineering goals of modifiability, 

understandability, reliability, and efficiency as he or she proceeds with the software 

design. The software engineering principles of abstract data typing, information 

hiding, modularization, localization, uniformity, completeness, conformability, and 

statistical quality control must be observed carefully in developing the design [12]. 

In this study, a general guideline for producing a quality software design, in

cluding numerous design tools and techniques, is shortly discussed. Because design 

is a very personalized and highly interactive process we shall leave the choice of 

these tools and techniques to the reader. 

2.5.1.1 Modern software design methods 

top-down design The characteristics are: 

• At each level, the details of the design at lower levels are hidden. Only 

the necessary data and control are defined. 

• Make a module small enough that it is within a programmer's intellectual 

span of control (about 50 lines). 
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• The design error will not be discovered until the end of the design process. 

structured programming The characteristic is the use of a single-entry and a 

single-exit control structure to provide a well-defined, clear, and simple ap

proach to program design. Since it eliminates GO TO statements completely, 

the program structure is often vastly complicated and sometimes makes the 

running time longer. The type of structured programming are SEQUENCE, 

IF THEN ELSE, DO WHILE, and so on. 

modular design A module means a modest-sized subprogram which performs in

dependently on specific function. A top-down design results in a modular 

design. 

2.5.1.2 Design representations techniques There are almost 18 differ

ent techniques so that a group of techniques is commonly used for designing a 

software system. 

flow charts There are two types of flow charts. First, the high-level flow chart is 

used to represent the flow of the logic. The high-level flow chart contains only 

control structures. Second, the detailed flow charts is used for the detail of 

logic. Each symbol of the detailed flow chart represents a single line of code. 

pseudo-code (metacode) Pseudo-code which consists of a shorthand notation for 

control structure is a detailed subsection of high-level flowchart. Therefore, 

pseudo-code technique is more flexible and clear than flow chart technique. 

HIPO diagrams Hierarchy plus Input-Process-Output diagram consists of one H 

block diagram and a set of the overview IPO and detailed IPO diagram. 
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Warnier-Orr Diagram This diagram utilizes nested sets of braces, some pseudo

code, logic symbols. 

A recommended design representation technique [61] is: 

• An H diagram is drawn and major subprograms are identified. 

• High-level flow charts are drawn for control structures and each major sub

program. 

• Pseudo-code is written for each flowchart. 

• The program (code) is written in the source language. 

2.5.2 Test design 

When the software modeling and requirements specification documents are 

sufficiently prepared, the necessary procedure for test design is to review and refine 

those documents. This procedure is applicable both to the entire software system 

and to the modules of the system. 

2.6 Concurrent Coding, Testing, and Management 

Each system module should be tested with the statistical quality control tool 

as soon as it is coded, and therefore the system can be built on a "secure-quality-

module" basis. By using the SIAD (Symbolic Input Attribute Decomposition) tree 

we can represent the input domain in a convenient form and can easily trace back 

the location of faults. Moreover, we may use the various statistical control charts 
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to find system variation. Once the variation of system is detected, the assignable 

causes (especially common cause) of variation need to be identified and eliminated 

by the use of cause and effect diagram. 

2.7 System Optimization 

In developing a fault-tolerant software, the software engineers have to consider 

the trade-offs among reliability improvement, resource consumption, and other rel

evant constraints. An optimal design is needed to maximize the system reliability 

under the restricted resources. The system optimization problem is formulated sub

ject to various restricted resources. The value of decision variables (component's 

reliabilities and the number of redundancies of each subsystem) can be determined 

when the system optimization problem is solved. The predetermined value of deci

sion variables may be varied later as the development phase moves forward. 

2.8 Software Acceptance 

In the middle of concurrent coding and test phase, the system and component 

reliabilities are examined. Since more information about the developing software, 

such as failure intensity or failure rate, are readily available at this time, more 

accurate system and component reliabilities can be reevaluated with updated data. 

If the system and module reliabilities do not meet the reliabilities required, 

reallocate the resources and solve the system optimization problem again with the 

updated data. A set of solutions along with determined decision variables will be ob

tained. The management chooses a solution among the new multi-optimal solutions 

obtained. The decision to be made is whether to improve module's reliabilities or 
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to increase the number of redundancies of some modules through manageable ways. 

This iteration continues until the current reliabilities meet the requirement. 

2.9 Resource Reallocation 

It is obvious that the component's failure rates of different stages (subsystems) 

are different. When an optimal solution is chosen, each component has its own 

projected reliability. Since the failure rates of each component are different, the 

time required to reach the projected component reliability is also different. Residual 

resources should be reallocated on the basis of those times required. Assigning 

accurate amount of resources to each stage at the beginning can eventually save 

development cost, time, and efforts. 
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3 SYSTEM PERFORMANCE PREDICTION 

As mentioned in the previous chapter, the main objective of the system op

timization for quality programming is to determine the number of redundancies 

and reliability of each subsystem under the given various resources available. The 

management is supposed to choose a solution from among the new multi-optimal 

solutions obtained at the system optimization stage. To make the management's 

decision reasonable and efficient, the number of redundancies of each subsystem 

needs to be determined before the design phase begins; this is because all redun

dancies are supposed to be developed independently from design phase. The initial 

decision on the number of redundancies of each subsystem doesn't need to be very 

accurate, but close enough (1) to increase the number of redundancies later with

out reallocating the major man power for new redundancies, or (2) to decrease the 

number of redundancies without wasting major effort. 

The purpose of this chapter is to describe techniques that can be used to pre

dict the system performance (e.g., failure rate) at the end of specification phase. As 

computer scientists try to analyze the software problem and the quality of the prod

uct, one of their first steps in the solution is to measure the software's complexity. 

Many attempts to quantify the complexity of software have been made [6,5,8,11|. 

Belady, in his survey on complexity, listed over 60 techniques which have ap
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peared in the literature [8]. Section 3.2 will discuss some important techniques and 

focus in depth on Halstead's equation. Section 3.3 will discuss how can the complex

ity be converted to the number of errors in the program and how does the estimated 

initial number of errors relate to the system performance prediction. Finally, the 

indices of performance which makes the estimation of the system performance closer 

to the true software system performance will be discussed in Section 3.4. 

3.1 Notation 

a slope of the line in Fig. 3.1 

c constant 

E effort measure 

f r  relative frequency of occurrence for type r 

H information content 

N program length (total operators plus operands) in Halstead length 

equation 

n total tokens 

Tir frequency of occurrence of rank r 

r  rank 

t  number of distinct types of operators plus that of operands 

T]i number of distinct operator types appearing in an algorithm 

772 number of distinct operand types appearing in an algorithm 
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3.2 Review of Complexity 

Types of complexity are (1) size or bulk, which can be measured by the num

ber of instructions; (2) difficulty of text, which can be measured by the number of 

different type of operators and operands; (3) structural complexity, which can be 

measured by the graph properties of control structure; and (4) intellectual complex

ity, which can be measured by the algorithmic difficulty. 

3.2.1 Zipf's law of natural language 

Before the Halstead's equation is discussed it is better to check the background 

of program length estimation, so called, the Zipf's law of natural language. Laws 

of this nature were first studied by Zipf in connection with natural languages. He 

studied the relationship between frequency of occurrence rir and rank r for words 

from English, Chinese, and the Latin of Plautus. The relationship between rir and 

r is depicted in Fig 3.1. Derivation of length equation (n) is as follows: 

log f r  = log c - a log r  

log /r • r® = log c  

f r  = c {cons tant ) .  

If a = 1, then 

f r - r  - c 

Ur — • r  =  c  
n  

Ur = —. (3.1) 



www.manaraa.com

19 

10.000 

i-iooo 

English words 

100 

Latin words 

100 1000 10 

rank r 

Figure 3.1: Occurrences frequency vs. rank 
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If we take the summation of both sides of Eq. 3.1 we get 

t  
nr  =  cn  ^  -. (3.2) 

r=l r=\  

The summation of the series 1/r is given as follows: 

è " i2((iV 1) + • • • (3 3) 

Substitution of Eq. 3.3 (retaining only two terms for modest-sized t) into Eq. 3.2 

yields an expression for the constant c in terms of t. 

^ 0.5772 +In f 

In most cases the rarest type will occur only once, in other words, — 1-

Since = 1 and r  =  t ,  we can get another equation for constant c from Eq. 3.1. 

c = — (3.5) 
n 

By substituting Eq. 3.5 into Eq. 3.4 we can get a length equation in terms of t. 

M = ((0.5772 + In f) (3.6) 

This equation tells that if we know the number of distinct type t, we can estimate 

the number of total tokens n. 

(Example) Let's estimate the length of an article which has 200 different word 

types. 

n = 200(0.5772 4- In 100) = 1037 words long. 

(Zipf's second law) In the tail of Zipf's law, there are generally several identical 

rir values which make plateau of types, each with the same nr- Therefore, the 
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Zipf's first law can be modified as follows: 

n =-^(0.5772 +In (3.7) 

Shooman and Laemmel [63] have shown that Zipf's law length equation has 

about 25% overall agreement in the estimation of program length for several software 

examples. Although it is not a good idea to use Zipf's law for the prediction of 

system reliability, this law is simple to use and gives a general concept for estimating 

program length early in the design phase. 

3.2.2 Halstead length equation 

Halstead [28] in his work found that for a nontrivial class of algorithms there 

is a quantitative relationship between operators and operands and their usage. He 

assumed that a program is a sequence of symbols, made up of alternating operator 

and operand symbols. In other words, the program can be generated by a stochastic 

process. 

The procedure of Halstead length equation generation will be introduced in 

final report. 

Halstead length equation is 

iV = 771 log2^ + V2 log2^ (3.8) 

Halstead's measurements are somewhat closer than those of Zipf. The overall 

agreement is about 14%. More data on significant sized real-world programs should 

be used to investigate the accuracy of the Halstead length equation. However, this 

equation can play an even more important role if it can be used for estimating 

program performance early in the design process. 
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3.2.3 Other complexity models 

Other complexity rhodels are Halstead's effort function (E), Shannon's infor

mation theory, and the graphic complexity model, and the like. 

•  H = logi  

• cyclomatic complexity 

• knot complexity 

• polynomial complexity 

These deterministic models empirically measure the qualitative attributes of a 

software and are used in the early phase of the software life cycle to predict the 

number of errors in a program. 

3.3 Complexity vs. Number of Errors 

Complexity measurement estimates and predicts the number of errors in the 

program. Four different hypotheses necessary to convert complexity measure to 

number of errors are: 

• Length hypothesis: the number of bugs per statement (e.g., machine language 

statement is equal to one operator plus one operand). 

• Information hypothesis: the number of bugs per information content (H). 

• Effort measure: the number of bugs per effort (E). 
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• Akiyama's hypothesis: the number of bugs per the number of decisions plus 

the number of subroutine calls. 

The proportionality constants should be carefully calculated. 

3.4 The Indices of Performance 

For more accurate estimation of system performance, other facts, aside from 

the program length, should be considered. The indices of performance related to 

the program complexity itself are 

• program length 

• language level 

• interrelationship among instruction 

• others 

The indices of performance related to the developers are: 

• skill (personal working experience) 

• efforts (team communication, etc.) 

• consistency 

• others 

An effort to collect the ind ices  o f  per formance  should be made in advance to 

improve the future product. At the end of the specification phase, the system failure 

intensity or system failure rate under a specified condition can be approximately 
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predicted on the basis of the past ind ices  o f  per formance .  A set of data obtained 

from the system performance prediction phase can be used to optimize the system. 

An optimal solution obtained from the system pre-optimization phase could be 

different from the one obtained from the system optimization phase. However, the 

management can have a general idea of system design before the design phase begins. 

A set of equations which make the estimation of the system performance closer to 

the true system performance of underdeveloping software need to be investigated 

further. 



www.manaraa.com

25 

4 OPTIMAL ALLOCATION OF SOFTWARE RELIABILITY AND 

REDUNDANCY 

To integrate software components into an optimization problem, two issues 

should be investigated. First, a software reliability-related cost function has to 

be chosen so that components can be incorporated into the constraint function 

to represent the amount of resources required to reach a certain reliability level. 

Second, the reliability function of software redundancy with common-cause failure 

has to be determined so that it can be incorporated into the objective function of 

the optimization problem. The following notation will be used in this chapter. 

4.1 Notation 

a,b unknown parameters of nonhomogeneous Poisson model 

h amount of resource i available 

Cl  cost per unit calendar time associated with failure detection 

C2 cost per unit calendar time associated with failure elimination 

software reliability cost function of resource i at stage j 

hardware reliability cost function of resource i at stage j 

H,S set of hardware and software stages, respectively 

redundancy cost function of resource i at stage j 
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k redundant component cost coefficient 

N initial number of bugs in program 

probability of being in state k in Markov model 

Rj (rj, Xj ) reliability of stage j 

RC(A,A*) cost of reliability improvement from A to A* 

r denotes reliability in general 

reliability and projected reliability of stage j, respectively 

s operational time, s > 0 

t debugging time 

t r  resource usage parameter per CPU hr (person hr/CPU hr) 

Xj number of components at stage j 

a, /3  failure rate ratio 

Aj the Lagrange multipliers 

A,A* current and projected failure rate, respectively 

A^ failure rate of the independent component 

( A^ = A ^ = Ag, in the two component case ) 

A^ failure rate of the common-cause of i components 

A(t) program failure rate after t units of debugging time 

/Li(t),m(t) expected number of faults removed after t units of 

debugging time 

Ht  resource usage parameter per failure (person hr/failure) 

$ unknown parameter of JM model 

— denotes a vector 
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4.2 Review of Software Reliability Model 

The definition of software reliability chosen is the one offered by Boehm [9]. 

Software possesses reliability to the extent that it can be expected to 

perform its intended functions satisfactory. 

The objectives of this survey of the software reliability model may be summa

rized by the following; 

• Determine what software structural and development characteristics are avail

able for analysis of software reliability. 

• Define improved methods for collecting reliability data. 

• Based on error histories seen in the data, define sets of error categories. 

• Perform a survey of existing software reliability models. 

4.2.1 Software reliability vs. hardware reliability 

Because the basic modeling techniques of software reliability are adapted from 

reliability theory developed for hardware systems, a comparison of software relia

bility and hardware reliability help in the use of these theories and in the study of 

hardware and software systems. 
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4.2.2 Classification of software reliability model 

Many ways of classifying software reliability models have been proposed. Soft

ware reliability models can be classified into the deterministic model and the prob

abilistic model. Performance measures of the deterministic model are obtained by 

analyzing the program texture and do not involve any random event. These deter

ministic models empirically measure the qualitative attributes of a software and are 

used in the early phase of the software life cycle to predict the number of errors in 

a program or are used in the maintenance phase for assessing and controlling the 

quality of a software. 

The probabilistic model represents the failure occurrences and the fault removal 

as probabilistic events. 

4.3 Software Reliability-Cost Function Development 

The software reliability-related cost function represents the resources required 

to improve the reliabihty of the software. For the bug-counting model, software 

reliability is a function of the number of initial faults and debugging time. Thus, 

the cost of improving a software from one reliability level to another can be related 

to the number of faults removed during the debugging period, as well as to the 

debugging time. 

As indicated by Musa et al. [50], failure-identification personnel, failure-correction 

personnel, and computer time are the three key cost factors involved in debugging. 

By associating the resources of failure-identification personnel and computer time 

with At, and the resources of failure-identification personnel, failure-correction per
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sonnel, and computer time with A/i, we can formulate a software reliability-related 

cost function as follows: 

i?C(A, A*) = (4.1) 

The formulations of the extra debugging time (At) and that of the extra faults 

removed (A/x) to reach A* from A depend on the choice of the software reliability 

model. In this study, two important software reliability models have been employed 

to formulate the At and A/Li. 

First of all, the Jelinski-Moranda (JM) model [36] is used because this is one 

of the earliest and probably the most commonly used model for assessing software 

reliability. Next, because of its simplicity and applicability over a wide range of 

testing situations, the Goel-Okumoto nonhomogeneous Poisson process (NHPP) 

model [25] is used. 

Time between failures models like JM model make following assumptions which 

are unrealistic. 

1. The instantaneous failure rate of software is proportional to the number of 

errors remaining in it, each of which is equally likely to cause the next failure. 

2. The time separations between failures are statistically independent and dis

tributed exponentially with different failure rates. 

However, fault count models, typically, Goel-Okumoto NHPP model, assumes 

that the failure process is a nonhomogeneous Poisson process. This model replaces 

assumptions 1 and 2 above with those corresponding to the structure of a Poisson 

process. The interfailure times are no longer independent, and the instantaneous 
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failure rate between failures varies with time. Some software development teams 

have successfully used this model to predict the number of remaining faults. 

4.3.1 Jelinski-Moranda model 

The software hazard function, or the failure rate during the time between 

the (i-l)st and ith failures, is given by 

Z( t i )  =  \=  $(JV - (i - 1)1 (4.2) 

Since this hazard function is constant, the number of faults discovered can be 

easily expressed in terms of the failure rate: 

( i - 1 )  =  i v - x  
$ 

i  =  14-jV - ̂  (4.3) 

Let \ j  be the projected failure rate, then 

A. 
j  =  l  + N (4.4) 

The extra number of faults needed to be removed to reach the projected failure 

rate from the current failure rate is 

(4.5) 

(4.6) 

of faults removed to reach 

Aj t i  =  j  -  i  

A; 
= 1 +  N 

$ 

Either Eq. 4.5 or Eq. 4.6 can be used to get the number 
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Also, the expected extra debugging time required can be expressed in terms of 

the failure rate. The total debugging time observed up to (i-l)st fault discovery is 

i -1  i -1  1 

E ^ 
k=l  fc=l ^ 

because the MTTF is the reciprocal proportion of failure rate. The total debugging 

time required to reach the projected failure rate Xj is 

j-1 i-1 1 

k=l  6=1 ^  

Therefore, the extra debugging time required to reach Xj  becomes 

j - i  i -1  
At = ~ "ïl 

k=l  fc=l 

= 

k=l  ^  6=1 ^  

1 

Eq. 4.7 can be rewritten in terms of A.-, so that At of a given Xj  can be directly 

Xj  
evaluated. Since j  =  1  +  N — 

i - 1  

At  =  Y .  
A - (& -1)1 

" £ «1^ -{k-1)1 

In some cases, the reliability objective is based on the reliability level of a 

given operation time. To formulate the reliability-related cost function of this type. 
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f a  1  l u r e  
r a t e  

(N-l)i{i * 

(N-3)* 

(N-4 . 

tw 

Execution time 

Figure 4.1: A typical plot of Z{t i )  for the JM model 
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reliability can be represented as a function of debugging time plus operation time. 

The system reliability r(s) after the ith failure occurs is 

ri(,) = (4.9) 

To represent the number of faults discovered in terms of the system reliability, 

In r^-(s) = -X-s 

^  ^  I n r i ( s )  
(4.10) 

Substitute Eq. 4.10 into Eq. 4.3; then, 

i = 1 + AT + (4.11) 

Let r j ( s )  be the system reliability desired; then, 

lnr,-(s) 
J = l + JV+-^ (4.12) 

Therefore, the extra number of faults removed to reach the system reliability 

required is 

An = j-i = ^[Inrj(j) - Inrj(s)] (4.13) 

Eq. 4.13 can be rewritten in terms of the parameters available and the system 

reliability required. 
In7';(5) 

= 1 + N -  i+ (4.14) 

Also, the extra debugging time required to reach r j { s )  after ith fault discovery 

is 
J —1 i—1 

= T ,  h  -  h-
k=l  k=l  



www.manaraa.com

34 

From Eq. 4.12, let M be j-1, then 

In 7-J (a) 
M = j -  l  — N- \  ^— (4.15) 

Therefore, 
M 1 

- { k - 1)1 

4.3.2 Goel-Okumoto nonhomogeneous Poisson process model 

In this model Goel and Okumoto [25] assumed that a software system is subject 

to failures at random times caused by faults present in the system. The following 

form of the model was proposed 

P [ N { t )  =  y ]  =  = 0,1,2,... (4.17) 

When the Goel-Okumoto NHPP model is used, the expected number of faults 

removed after debugging time t is 

m[i)  = a[l - e~^^]  (4.18) 

and the program failure rate at intermediate debugging time t is 

X { t )  =  m ' { t )  = abe~^^ .  (4.19) 

Therefore, the debugging time t and the debugging time <*, to reach the pro

jected failure rate A*, can be represented in terms of failure rate. Since InA = 

ln(a6)  -  bt ,  

t  = -[ln(a6) - In A]. (4.20) 
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and 

t*  =  ̂ [ ln{ab)~\nX*] .  (4.21) 

Additionally, the expected number of faults removed, to reach A* can 

be represented as 

m{t*)  = a(l — ) 

= o[l - g-(ln(a6)-lnA*)j 

-
A* 

= O — -g-, (4.22) 

Let the objective failure rate be A*, the current time be t, and the current 

failure rate be A, the extra debugging time required and the extra faults removed 

to reach A* from A are 

= t*  - t  

= i(lnA-lnA*) 
0 

Am = a{e-^^ 

(4.23) 

= ae — In  ab  gin A _ gin A* 

A > A*. (4.24) 

Let Sj^ be the time between failures (k-l)th and kth, and be the time to k 

failures, then it can be shown that the conditional reliability function of Sf^, given 

h-1  = 

= exp  —a e  -b t  _  -6(<+s (4.25) 
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To represent t in terms of r(s|i), 

-b t  _  -b{ t+3)  ^  lnr{s \ t )  

e-^ t  _  g-6< . ̂ -bs  

( 1 _ 

, -h t  

-b t  = In 

lnr(a|<) 

a 
lnr(a|f) 

a 
lnr(a|f) 

'a(l 

- lnr(s|<) 

t  =  — 7 In 
b 

lnr{s \ t )  

a(l - e 

Similarly, m(t) can be represented in terms of r(a|f). Hence, 

m{t)  =  «(1 - e-W) 

= a 1 + 

- : a + 

lnr(s|<) 

a(l - e-^«) 

lnr(s|i) 

( l  -  e-bs)  • 

Therefore, 

Ai = 

Am = 

t *  -  t  

In -
In r { s \ t )  

a{ l  -  e-bs)  

T n { t * )  —  m { t )  

lnr(s|i*) lnr(a|<) 

— In I — 
lnr(a|(*) 

a(l _ p-bs  

{1-e-bs) (1 _ p—bs 

{ 1 - l - b s ^  [lnr(.K*)-lnr(3|t)l. 

(4.26) 

(4.27) 
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4.4 Software Redundancy Model 

In software development, redundancies are programs developed by different 

groups of people or different companies based on the same specifications. These 

programs are designed to perform the same function. In order to make the failures 

of redundant copies to be as independent as possible, different computer languages, 

development tools, development methodologies, and testing strategies may be ap

plied to different redundant programs. 

Nevertheless, it has been shown that software redundancies are not totally 

independent [18,38]. Some input data will fail more than one redundancy because of 

the common errors made by different development teams. This partial independence 

of software redundancies can be represented by a common-cause model. Some 

specific common-cause models have been proposed, especially in the area of nuclear 

safety. The common-cause model for software redundancy is developed as follows. 

4.4.1 Two-component Markov model 

Because of common-cause failure, a system with two partially independent 

software components in parallel can be transformed into a series system with two 

independent components in parallel and a common-cause component as shown in 

Figure 4.2. The Markov model of this system with common-cause failure is shown 

in Figure 4.3 where the failure rates of each independent component are assumed 

to be the same. 

Let the state number of this Markov process be the number of components 

failed. Then, the differential equations of this Markov process are 
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Figure 4.2: Transformed two-component software redundancy 

Figure 4.3: Two-component Markov model with common-cause failure 
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Po( t )  =  -(2Ai + X2)PoW 

P{(1) = 2AiPo(') - APiCi) 

4(0 = A2F0W + AlflM 

^bC) + PiC) + ̂ 2(0 = I 

with initial condition PQ{0) = 1. 

When the Laplace transform is taken, 

- 1 = -(2^1 + A2)PO('S) 

= 1/(5 + 2Ai + A2) 

and 

sPi{s )  =  2AIPO(5) - (Ai + A2)PI(S) 

_ -^1 I '^^2 

where 

s  +  A]^ +  A2 s  +  2A^ +  A2 

.4]^ = 2A]^/A]^ = 2 

.42 = 2A]^/ — A2 = —2. 

Taking the inverse Laplace transform, the state probabilities are 

Po(0 = e~(2Ai+A2)i 

Pl{ t )  =  2e~( '^ l+ ' ' ^2)^  -  2e~(2Ai+A2)< 
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The system reliability is 

Rsi t )  =  PQ{t)  +  Pi{ t )  

= - e-(2'\l+A2)< (4.28) 

By the use of matrix method, the same system reliability can be derived. The 

differential equations based on the Markov model can be expressed in terms of 

matrix. 

P'{ t )  = Ap{t )  

The transient matrix A for a two-component redundant system is 

— (2A^ + Ag) 0 0 

—(A^ -f A2) 0 

A2 (Ai + A2) 0 

with eigenvalues Eq = -(2A2 + A2), = -(A^ + A2), and E2 = 0. 

For every complex n  x  n  matrix A there exists a nonsingular matrix P such 

that the matrix 

J = P-^AP 

is in the canonical form 

J = 

^0 

JL 0 

0 ••• 

J'. n  

where J is called Jordan canonical form and it is a diagonal matrix with diagonal 

element of matrix A, i.e., 
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EQ 

J = El  

E  n  

A set of corresponding eigenvectors for a two-component redundant system is 

P = (PoÂ^2) 

The eigenvectors lead to three sets of linear equations associated with a set of three 

equations in three unknowns. 

(EvI - X)Pi = 0 ! = 0,1,2 

where Ej is an eigenvalue and I is the identity matrix. 

The values of the first vector Pq are the solution of the following simultaneous 

equations. 

(EoI-A)(Po)  

0 0 0 PqO 

—2A]^ — 0 — 0 

"•^2 ~(^1 + ^2) "(2-^1 + -^2) ^02 

Therefore, 

^0 = 

1 

- 2  

1 
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For Pi, 

(EiI-A)(Pi) 

-Ai 0 0 

-2\i 0 0 

-A2 -(A^ + A2) -(Aj + A2) 

^10 

fll 

Pn 

= 0 

Therefore, 

0 

-1 

1 

For P21 

(E2l-A)(P2) 

(2A1+A2) 0 0 

—2A^ 4-(A^ "T A2) 0 

-A2 ~(^1 + •^2) ^ 

^20 

P2\ 

P22 

= 0 

Therefore, 

P2 = 

Hence, the matrix P becomes 

P = (^0-^1^2) = 

1 0 0 

- 2  - 1  0  

1 1 1 
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The inverse matrix P~^ is the same as F and the matrix J becomes 

-(2^1 + -^2) 0 0 

^  0  — ( +  A 2 )  0  

0 0 0 

Using the initial conditions, 

PoW 1 

P(0) = PIM — 0 

PiW 0 

and 

fo(<) 1 0 0 e^Oi  0 0 1 0 0 1 

fï(<) 
= = 

-2 -1 0 0 0 -2 -1 0 0 

1 1 1 0 0 1 1 1 0 

Therefore, 

P2{t) = + 1. 

The system reliability is 

Rs{ t )  = 1 - P2{t )  = 

4.4.2 Three-component Markov model 

A system with three partially independent software components (A, B, and C) 

in parallel is shown in Figure 4.4. Since some input will cause one, two, or three 

components to fail, the failure rate of each software component (e.g., component 

A) can be broken down into an independent failure rate (A ^), two two-component 
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Figure 4.4: Three-component software redundancy 

common-cause failure rates and and a three-component common-cause 

failure rate (A A Venn diagram (Figure 4.5) can be introduced to provide a 

better picture of these failure rate divisions. 

Here, the system is operating as long as any entire circle among three circles 

is good. By assuming Aj^ = A^ = A^ = A^, A2 = A^^ = ^BC ~ 

and A 3  = A 45(7, a three-component Markov model with common-cause failure is 

shown in Figure 4.6. The differential equations and initial condition are as follows. 

-Pq'CO = -(3Ai + 3A2 + A3)Po(i) 

Pl'(t) = ZXiPQ{t) - (2Ai -F 3A2 + A3)Pi(<) 

P2'(t) = 3a2po(^) + 2(Ai -t- A2)Pi( 0  -  ( A ^  4 -  2 A 2  - r  

= ^3-^o(^) + (^2 + -^3)^1(0 + (-^1 + 2A2 -r A3)P2(0 

•Po(0 + -PiCO + -^2(0 + -^3(0 = 0 
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Figure 4.5: A Venn diagram of failure rate 

and initial conditions fQ(0) = 1,P]^(0) = P2(®) ~ -^3(0) = 0. 

Taking the Laplace transform, 

- -(3Ai + 3A2 + A3)PO(5) 

P b ( ^ )  =  l / ( s  +  3 A i  +  3 A 2  +  A 3 )  

and 

sPi(s) = 3AiPo(s) - (2Ai + 3A2 + A3)Pi(a) 

3AiPo(â) 
Pl i s )  =  

s  +  2A- j ^  "T  3A2  +  A3  

••^1 £2 
s  +  2A^ + 3A2 "1" A3 s  "T SA^ 4- 3A2 4" A3 

where 4l=3, v4.2=-3. And 

•s-P2(^) = (2Ai-t-2A2)PI(s) + 3A2PO(-3) - (Ai + 2A2 + A3)P2(S) 
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, = (2Ai + 2A2)Pi(^) + 3A2Po(a) 

(s + A;I^2A2 + A3) 

= I ^2 . ^3 
s "i" A2 2A2 "T Ag s + 2A2 -f- 3A2 "t" Ag 3 + 3A^ 3A2 -l- Ag 

where 

_ 3(2A^ + A2 + 3A2A2) _ 

^  ( A i  +  A 2 ) ( 2 A i  +  A 2 )  

6A? + 6A1Ao 

"  - ( A i + A 2 ) ( A I )  = - «  

6A? 4- 3Ai Ao 

=  - ( 2 A I - A 2 ) ( - A I )  = ' •  

Taking the inverse Laplace transform, the state probabihties are 

Pq(<) = 

Pl{ t )  = 3e~(2Ai+3A2+A3)i _ 3g-(3Ai+3A2-t-A3)< 

P2(0 = - 6e~(^^l"''^'^2+A3)i ^ 3g-(3Ai+3A2+A3)i 

The system reliability is 

Rs{ t )  =  PQ{ t )  +  P i i t )  +  P2{ t )  

= 3e"(^l"^^^2+'^3)^ - 3e-(2Ai4-3A2+A3)< (4.29) 

= +e-(^^l+^'^2+^3)^ (4.30) 

4.4.3 Four-component Markov model 

Based on the same argument, the four-component Markov model is shown in 

Figure 4.7 and the differential equations are as follows: 

^6(^) ~ ~(4Ai + 6A2 + 4A3 + A4)Po(i) 



www.manaraa.com

47 

3X, 2 ( X j  +  X g )  +  2 ^ 2  +  X 3  

Figure 4.6: Three-component Markov model with common-cause failures 

3(X, + Xm) 

+ 2X„+X3)( 3JA1+3X2+3X3+X 

Figure 4.7: Four-component Markov model with common-cause failures 
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P[{ t )  =  4AjPo(0 — (3-^1 + 6A2 + 4A3 + A4)Pi(i) 

P2{ i )  = 6A2-PO(') + 3(A;|^ 4-A2)PI(0 ~ (2A]^ + 5A2 + 4A3 + A4)P2(i) 

— 4A3/'o(0 + 3(A2 + A3)P]^(f) 4-(2A]^ + 4A2 + 2A3)P2(0 

—(Ai  +  3A2 +  3A3 +  \ ^ )P2{ t )  

•^4(0 = •^4-^o(^) + ('^3'^4)'^l(0 + (-^2 + 2A3 + A4)P2(0 

4-(Ai + 3A2 + 3A3 + A4)P3(<) 

with initial conditions Pq(0)=1, Pi(0) = ̂ 2(0) = ̂3(0) = ̂4(0) = 0. 

Taking the Laplace transform and then the inverse Laplace transform, the 

system reliabiUty is 

Rs  =  4e~(^ l+^ ' ^2+3 ' ^3+ ' ^4 ) ^  -  6e~(^ ' ^ l " ^ ^ ' ^2+4A3+A4) f  

4.4e~(3'^l+6A2+4A3+A4)i _ g-(4Ai-f6A2+4A3+A4)<_ (4.31) 

4.4.4 N-component Markov model with common-cause 

The model can be extended to a generic N-component model. Without making 

a significant discrepancy in system reliability, a simplified N-component Markov 

model can be considered and shown in Figure 4.8. In this simplified model, the 

only common-cause failures considered are the common-cause failures that cause 

all the redundancies to fail. This common-cause failure rate may represent the 

failure rate of system software. The system reliability of this simplified model can 

be derived from the preUminary analysis as follows: 

The differential equations of this Markov process are 

— -(-^A -f AC)Pjy(0 
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N-1 

X 

Figure 4.8; N-component Markov model with common-cause failure 
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= {k + - (&A + Ac)Pfc(i) k=N-l,..,l 

Poi i )  =  ̂ c [P i { t )  +  ... + PNW]  + APi(i) 

Sf=0 PkW = 1 

Pjy(O) = 1 

Taking the Laplace transform and the inverse Laplace transform, the state 

probabilities can be derived as follows. 

sPjY(s) — 1 = —(iVA + Xc)P^{s) 

=  l / ( s  +  i V A - f - A c ) ;  

then, 

In addition. 

_  - { N X + X c ) t  (4.32) 

N X P j ^ { s )  -  [ { N  -  1)A + Xc]P j \ f_i{ s )  = sPjY_i{ s )  (4.33) 

then 

PiV-l(s) = 
s  + (iV — 1)A + Ac 

N N  

s  + (iV — 1 )A + Ac 5 + NX 4- Ac 

PiV-l(^) = ]ve" K ^ - l )A+Acl( _ jvg-(ArA+Ac)< (4.34) 

In general, the state probabilities and the system reliability can be derived as 

follows. 

N 
Pk i ^ )  = É 

j=k  

N \ ,  N  

V ' p='2,p^i 

\ 

(4.35) 

/ 
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N-1  
Rs{i) = ^ (4.36) 

k=l  

The above solutions of state probabiUties are in exact but complex forms. An 

approximated form of Equation 4.36 along with the accuracy of the solution under 

the simplification assumption in a specified environment, is derived as follows. 

i'J(i) = Ac[l-Po(i)l + APi(()- (4.37) 

If 

XPi{t) < Ac[l -

neglecting 

foM = V[i-WI 

•s-Po(^) = ^c / s  - AcPo(^) 

-Po('®) — l/a-l/(s + Ac) 

and 

PqH) = 1 -

The approximated system reliability is 

Rs{t)z^l - PQ{t) = (4.38) 

Because of expensive development cost, in reality, it would be very undesir

able to have a system of more than four software redundancies in parallel. When 

other common causes exist among a small subset of N modules, we have to re

vise the above simplified model. A refinement for the full-version, unsimplified, 

N-component common cause model is evaluated in next subsection. 
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Figure 4.9: Configuration of N-component redundant system 

4.4.5 Generic N-component Markov model 

A system with N partially independent software components in parallel is shown 

in Figure 4.9. The unsimplified Markov model of this system with common-cause 

failure is shown in Figure 4.10 where the failure rates of each independent component 

are assumed to be the same. Let the state number of this Markov process be 

the number of components failed. Then, the differential equations of this Markov 

process can be expressed in terms of matrix. 

P ' { t )  =  AP{ t )  
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N-1 

X c 

Figure 4.10: Generic N-component Markov model 

The transient matrix A is 

(^00 0 0 0 0 

«01 ail 0 0 0 

"02 «12 022 0 0 

^O(n-l) ®l(n-l) ®2(n-l) '^(n-l)(n-l) °n(n-l) 

" O n  ® l n  ® 2 n  • • •  ° ( n — l ) n  

= (Sj) 

4.4.5.1 Construction of matrix A An element of matrix A repre

sents the rate that the system moves from state i to state j. Let z be the system's 

jump size (z = j - i). 

Jump size (z) = 1 
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First of all, the element represents the rate that the system moves from 

state zero to state one. The system can move from state zero to state one only 

when a component out of n good components is failed due to an independent cause 

failure. Since all independent cause failures are mutually exclusive, the number of 

possible outcomes of this event is the same as that of choosing one component from 

n good components. In other words, the number of possible outcomes is that of 

choosing one out of n good components and none out of zero failed component. 

0 
7 1 —  

Therefore, the element becomes 

v i /  

^ 0 ^ 0 

E 
k=0  \  ̂ /  

4 (4.39) 

Second, the element matrix A represents the rate that system moves 

from state one to state two. The system can move from state one to state two when 

a component out of (n-1) good components is failed due to the introduction of one 

of these two cases to the system. 

• case — One of (n-1) remained independent cause failures. The number 

of possible outcomes of this case consists of choosing one out of (n-1) good 

components and none out of one failed component. 

(n — 1)A]^ = 
/ 

\ 

n .  —  1  

1 

\ 

\ 0 /  
'1 

• ^2 case — One of (n-1) two-component common-cause failures. Here, the 

number of possible outcomes for two-component common-cause failure in-
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eluding the failed component is that of choosing one component out of (n-1) 

good components and one out of one failed component. 

(n - 1)A2 = 
\ 

^2 

The element 0^2 is derived by adding the above two cases together. 

(n - l){Xi + A2) — 
1 

E 
k=0  V ^ } 

(4.40) 

Third, the element 023 means the system moves from state two to state three. 

Since the system is in state two, there are two failed components and (n-2) good 

components. If one more component out of (n-2) good components fails, then, the 

system moves to state three. Three different types of failure rate (A^, A2, and A 3 )  

are involved in this case. 

• Aj case — A failure out of (n-2) remained independent failure. The number 

of possible outcomes consists of choosing one out of (n-2) good components 

and none out of two failed components. 

[n  — 2)Aj = 
n  — 2 

1 
/ 

/ „ \ 

v » /  

• A2 case — A failure out of two (n-2) two-component common-cause fail

ures. This is because there are (n-2) possible combinations of two-component 

common-cause failure including one bad component. Since there are two bad 

components in the system, the total number of combination is 2(n-2). This 



www.manaraa.com

56 

number consists of choosing one component out of (n-2) good components and 

another out of two failed components. 

/ 

2(n — 2)A2 = 
n  — 2 

1 V ^ y 
^2 

• A3 case — A failure out of (n-2) three-component common-cause failures. 

There are (n-2) possible outcomes of three-component common-cause failure 

that include two bad components. This is because one component from (n-2) 

good components and other two from two failed components. 

n - 2  

1 

/ 

(n  -  2)A3  =  

Therefore, the element ^23 becomes 

(n — 2)(A2 + 2A2 + A3) = 

\  / j N  

\ / V 2 /  
•^3 

fc=0 \  k  
^k+2  (4.41) 

At last, the element means the system moves from state (n-1) to state 

n. Since the system is in state (n-1), there are (n-1) failed components and one good 

component left. N different types of failure rates (A]^, A2, ..., A^) are involved in 

this element. 

• A^ case — A failure out of one good component. There is only one good 

component left. The number of possible outcomes consists of choosing one 

component out of one good component and none out of (n-1) failed compo

nents. 

lAi = 
n  -  I  

0 

\ 

4 
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^2 case — A failure out of (n-1) two-component common-cause failure. Each 

two-component failure includes one remained good component and one of (n-

1) failed components. The number of possible outcomes consists of choosing 

one component from one good component and one component from (n-1) 

failed components. 

(n  -  1)A2  =  

( . \ 

\ ̂ 

/ 
Tl — 1 

1 
^2 

A3 case — A failure out of (n-l)(n-2)/2 three-component common-cause fail

ure. There are (n-l)(n-2)/2 three-component common-cause failures. Each of 

them includes one remained good component and any two out of (n-1) failed 

components. The number of combination becomes simply choosing one com

ponent out of one good component and two components out of (n-1) failed 

components. 

( n -  l ) ( n - 2 )  
A 3  =  

\ V 

n — 1 

2 

A^_]^ case — A component can also fail when the system is introduced an 

(n-l)-component common-cause failure that includes a last good component. 

Each (n-l)-component failure has a good component and (n-2) failed compo

nents. The number of outcomes of (n-l)-component common-cause failure is 

the same as the number of choosing one component from one good component 
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and (n-2) failed components from (n-1) failed components. 

( . \ 

\ ' j  

I  
71  — 1 

Tl — 2 

\ 
^n-l 

• \n case — Since the system is in state (n-1), the only possible outcome of 

n-component common-cause failure is the one that includes all (n-1) failed 

components and a left good component. The number of this outcome consists 

of choosing one out of one good component and (n-1) out of (n-1) failed 

components. 

l A n  =  
/ i \  /  

v i /  

n — 1 

n — 1 

\ 

The element is derived by adding all cases together. 

Tl — 1 

0 
Ai + X2  +  

' n - l '  
Ag-t-.. .4" 

^ 1 \ "-1 / n - 1 ^ 

y 1 y k=0  

' n - l '  

71  — 2 
-^71-1 + 

n — 1 

(4.42) 

In general, when the system jumps only one step (z = j - i = 1), the element 

Uj^j of matrix A can be represented as follows: 

Hj  =  

\ 
n  — I  3 -2  

E 
k=0  

/ 
J - 2 

k  
2 = 1 (4.43) 

Jump size (z) — 2 
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The element aQ2, first, represents the rate that the system moves from state 

zero to state two. This can happen when a two-component common-cause failure 

fails two components in the system. There are n(n-l)/2 possible two-component 

common-cause failure combinations because any two components out of n good 

components are the candidates of this combination. The number of possible out

comes becomes the number of choosing two components out of n good components 

and none out of zero failed component. 

n  (n  -  1) 
A2 = 

\ n  

\ 0 /  
A2 

Therefore, the element 0Q2 becomes 

A2 = 
fc = 0 \ K 

^k+2  (4.44) 

Second, for the element the system moves from state one to state three 

when two components out of (n-1) good components are failed. Since a component 

has been failed and (n-1) good components are available, there are two cases to be 

considered. 

• A2 case — Any two-component common-cause failure that do not consist the 

component already failed is a good candidate. The number of this outcomes 

consists of choosing two good components from (n-1) good components and 

none from one failed component. 

i  

{n  — l)(n. — 2)12X2  ~ 
n — 1 

\ ( 1 ^ 

A2 
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• Ag case — Any three-component common-cause failure that includes the com

ponent already failed is a good candidate. The number of this outcomes con

sists of choosing two good components from (n-1) good components and one 

component from one failed component. 

(n  — l)(n — 2)/2Ag = 
/ . \ 

\ 1 /  

/ 
n — 1 

2 

Therefore, the element becomes the sum of the above two cases. 

\ 

Ao -f ^3 = 

\ / 

1 

E 
k=0  k  / 

(4.45) 

Third, the element 024 represents the rate that the system moves from state 

two to state three. This could happen if any of these three kinds of failure introduced 

to the system. 

• A2 case — A failure out of (n-2)(n-3)/2 two-component common-cause fail

ures. Since two components are already failed, the possible outcomes for 

two-component common-cause failure are any combination of two components 

from (n-2) good components and none from two failed components. 

(n — 2)(n — 3) 
A2 = 

Tl — 2 

2 / vV 

^2 

A 3  case — A failure out of (n-2)(n-3) three-component common-cause fail

ures. The possible candidates for three-component common-cause failure are 

any combination of two components from (n-2) good components and one of 
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failed component. Since there are two components failed, the total number of 

candidates for three-component common-cause failure is two (n-2)(n-3)/2. 

71  — 2 

2 

/ 
(n — 2)(n — 3)Ag = 

\ / V1 

• A4 case — A failure out of (n-2)(n-3)/2 four-component common-cause fail

ures. The possible candidates for four-component common-cause failure are 

any combination of two components from (n-2) good components and two 

from two failed components. 

I  
(n - 2 ) { n  —  3) 

A/i — 
n - 2  

2 V 2 /  

The element 024 is derived by adding three cases together. 

Ao 
( n - 2 ^  

/ 
2A3-H 

71 — 2 

2 

\ 

A4 = 
^  n -  2^  2 

E 
k=0  

^ 2 ^ 
^k+2  

(4.46) 

In the same token, the elements 035, 045, ..., can be derived. 

Finally, for the element 2)n^ the types of failure rate involved in this element 

are from A2 to A^. Since there are already (n-2) failed components in the system, 

the system moves to state n if the remaining two good components fail. Therefore, 

every common-cause failure candidates should include these two good components. 

• A2 case — The number of possible outcomes consists of choosing two compo

nents from two good components and none from (n-2) failed components. 



www.manaraa.com

62 

• Ag case — The number of possible outcomes consists of choosing two compo

nents from two good components and one from (n-2) failed components. 

/ \ 

V 2 /  

/ 
71 — 2 

1 

\ 

• case — The number of possible outcomes consists of choosing two com

ponents from two good components and (n-3) from (n-2) failed components. 

/ \ 

V ^ / \ 

n - 2  

n — 3 

• An case — The number of possible outcomes consists of choosing two compo

nents from two good components and (n-2) from (n-2) failed components. 

( _ \ 
n  — 2  

n  — 2  

\ 

^2  

The sum of these cases becomes 

^  n - 2 ^  ' n - 2 '  

/ 

Ag 4-... -I-

^  n  — [n  — 2 )  ^  

\ / 

71  — 2 

E 
k  

n  — 3 

/ 

/ n - 2 '  

n - 2  
m  

\ 

n  — 2 

k  
^k+2  (4.47) 

In general, when the system jumps two step (z = 2), the element ojj of matrix 

A can be expressed as follows: 
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/ . \ 
n  — I  

H j  =  

\ 

/  j - z  

/ 

E 
Â:=0 \ 

^k+z^  " 2  =  2  (4.48) 

Jump size (z) = 3 

The same procedure is applied to derive each element of matrix A when 

jump size becomes three. For the element agg, the number of outcomes for three-

component common-cause failure (A3) consists of choosing three components from 

n good components and none from zero failed component. 

/ \ 
n  

\ 3 /  \ ° /  

For the element 0^4) the number of outcomes for three-component common-cause 

failure (A3) and four-component common-cause failure (A4) consists of choosing 

three components from (n-1) good components. Here, outcome of four-component 

common-cause failure includes a failed component. 

/ n — 1 

3 / \ 0 /  
^3' 

/ V ^ ) 
A4 

For the element 025) there are three types of common-cause failure involved. 

The number of outcomes for three-component common-cause failure (A3) consists 

of choosing three components from (n-2) good components and none from two 

failed components. The number of outcomes for four-component common-cause 

failure (A4) consists of choosing three components from (n-2) good components and 

one component from two failed components. The number of outcomes for five-

component common-cause failure (Ag) consists of choosing three components from 
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(n-2) good components and choosing two components from two failed components. 

/ _ \ \ / 
71 — 2 

3 
•^3. 

72 — 2 

3 / V ^ / 
A4, 

Tl — 2 

3 

'  ' 2 ^  

\ 2 /  

In general, when the system jumps three steps (z = 3), the element a- of 

matrix A can be expressed as follows: 

/ . \ 
n  — I  

( ^ i j  = 

\ 

J - 2  

E 
fc=0 v k  

A z = 3 (4.49) 

Jump size (z) = n-1 

There are two elements belong to this jump size. For the element 

the number of outcomes for (n-l)-component common-cause failure (A^_]^) consists 

of choosing (n-1) components from n good components and none from zero failed 

component. 
/ 

nA n-1 = 
n  

n — 1 
/ 

^n-1 

For the element the number of outcomes for (n-l)-component common-

cause failure (A^_]^) consists of choosing (n-1) components from (n-1) good com

ponents. The number of outcomes for n-component common-cause failure {Xn) 

consists of choosing (n-1) components from (n-1) good components and one com

ponent from one failed component. 

n — 1 

/ 
(^n—1 ^Ti) 

I I  -  1 

n — 1 

\ 1 

E 
k=Q 

^k+n—1 
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In general, when the system jumps (n-1) steps, the element aj^j of matrix A 

can be expressed as follows: 

/ . \ 
n  — I  

\ / 

3- z  

E 
k=0  k  

^ f c + 2 '  z  =  n  — I  (4.50) 

Jump size (z) = n 

For the element qq^, the system moves from state zero to state n only when 

n-component common-cause failure is introduced. The number of outcomes for n-

component common-cause failure {\ri) consists of choosing n components from n 

good components. 

IAtj, — 

I  \  
n  

\ / 

0 

E 
fc=0 

/ 

\ 

0 
^k+n  (4.51) 

Jump size (z) = 0 

All diagonal elements of matrix A belong to this jump size. According to the 

property of transient matrix, the sum of each element in the same column should be 

zero. Therefore, the rate of these element is the negative of the sum of corresponding 

column vector elements. 

n—i  

- E «i(/fc+i)' 
k=l  

(4.52) 

Jump size = negative 

Since the system is nonrepairable, there is no backward flow in the Markov 

process. All elements in the upper side of matrix A are zero. 

Hence, the general equations for the elements of matrix A are; 
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Hj  

I  •  \ n  — I  

~ ^k= l  

^k=0  
J - z 

k  

'/ . \ 
n  — I  

L\ 
^6=0 

^k+z  

I  .  \  
] -  z  

^fc + 2 

; 
0 

\ { i  <  3  

\ i i =  3  

otherwise 

(4.53) 

4.4.5.2 Numerical solution for system reliability In this study the 

system reliability of n components will be found by the use of numerical analysis. 

In order to find the numerical solution of the system reliability the numerical value 

of each component in matrix A should be calculated. In the middle of testing phase, 

the component failure rate can be estimated. Because the redundant components 

are not yet developed, the common-cause failure rates are unknown. Then, a careful 

estimation of parameters a, /3 based on historical data gives estimated common-

cause failure rates. The relationship between component failure rate and common-

cause failure rate are as follows: 

— oiA, 0 < a < 1 

A 2  = / 3 A 3  =  . . .  =  Z ? "  ^ A n  

and 

( 1  —  a ) A  —  A 2  " t "  A g  4 -  . . .  4 -  A 7 J .  

Eigenvalues are the diagonal elements of matrix A. 

•^0 = °00' = •••) -E'n = Ann = 0 
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For every complex n  x  n  matrix A there exists a nonsingular matrix P such 

that the matrix 

J  =  P - ^ A P  

is in the canonical form 

J = 
J l  0 

0 

J .  n  

where J is called Jordan canonical form and it is a diagonal matrix with diagonal 

element of matrix A, i.e., 

J = 

^0 

El  

E-n  

A set of corresponding eigenvectors is 

P  =  • • • P n )  (4.54) 

The eigenvectors lead to (n+1) sets of linear equations associated with a set of 

(n+1) equations in (n+1) unknowns. 

(Ejl - A)Pi = 0 i  =  0 , 1 , . . . ,  n  

where is an eigenvalue and I is the identity matrix. 

The values of each are the solution of Equation 4.54. Each vector Pj has 

(n+1) elements, Pj = [PjQ' -^zl' • • • ' leads (n+1) simultaneous equations. 
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Since all elements of upper side of matrix A equals to zero, all elements before 

element of vector become to zero. 

= 0 ,  i f  k  <  i  

Here, is the element of vector P^. 

The first element that is not zero is the element of vector Pj. All elements 

Pik {k > i) of vector Pj can be represented a function of element (Pjj). Once, 

the value of Pjj is arbitrary chosen, the value of rest P^j^ (A: > i) can be determined. 

By the inspection of Pjj values from simple cases, it is found that P^j = ( —1)""^ 

gives a simple matrix whose inverse matrix is the same. Therefore, let Pj^ be 

( — then, the value of rest elements of vector Pj can be calculated one by one. 

After the completion of P matrix, the inverse P~^ matrix needs to be found. 

With the initial conditions, 

( = [-Po(O), Pl(0),..., P n { 0 ) f  = [1,0 0]^ 

The probability of staying in each state can be calculated based on following equa

tion. 

fbOO 

P l i t )  

Finally, the system reliability is 

Rs{ t )  = 1 — Pn{ i ) -
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4.5 Formulation of The Software Reliability Optimization 

To optimize the reliability of a software system, the reliability redundancy 

allocation approach is applied. A general formulation of this problem is 

Max  R3{X ,R)  

subject to 

Z j L  1 9 i j (>• j, X j )  <  h  for all i 

4.5,1 A pure software system 

A software is always accompanied with hardwares. However, when the relia

bility of hardware component in the system is known, the system reliability can be 

optimized by including only software components. When only software components 

are involved in the optimization problem, the above problem can be transformed 

into the following form: 

Max  Rs{R i ,R] \ j ^ )  

subject to 

Eje5 < h for all i 

The objective function of the above formulation is represented in terms of the 

stage reliabilities that are, in turn, functions of both independent module reliabilities 

and of the number of redundant modules. The constraint function of the above 
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formulation is reliability-related cost function. The reliability-related cost function 

is 

f { r j , r j )  = Ci t r / ^ t  +  C2//r'A/i 

where, the formations of the extra debugging time (At) and that of the extra faults 

removed (A/x) to reach r* from r depend on the choice of the software reliability 

model. 

When the JM model is used, the formulations of the extra debugging time (At) 

and that of the extra faults removed (A^u) becomes; 

Af = 5] 
M ^ 

6 -1)] 

where 

When the NHPP model is used, the formulations of the extra debugging time 

(At) and that of the extra faults removed (A^u) becomes; 

= t* - t = ^[ln(— Inrj) - ln(— InrJ)] 

and 

A/i = n{ t* )  -  n{ t )  =  - Inrj] 

The redundancy-cost function, hij{xj), depends upon the type of constraints 

involved. A constant function, an increasing function, or a decreasing function can 

be used as needed and should be described in a generic form but in a form that 

reflects the software development life-cycle. 
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4.5.2 A hardware and software mixed system 

When both hardware and software components are not trivial, the reliability of 

both hardware and software components should be optimized with optimal number 

of redundancy. In a pure software system, each stage represents an independent 

functional module or subsystem. However, this model can be extended to optimize 

the reliability of a hardware and software system by adding the constraint function 

of hardware part. 

The objective function can be 

M a x  

The new constraints become 

The objective function of the above formulation is represented in terms of the 

stage reliabilities. Each stage can be a pure software component, a pure hardware 

component, or a hardware and software mixed component. The constraint function 

is represented as the product of a reliability-related cost function and a redundancy-

cost function. For hardware components, the reliability-related cost function is 

rj = exp[—AjS] 

-S 

In r j  

y 
f{ r j )  =  v j  

For software components, the reliability-related cost function is 

/(r^rp = CitrAt 4- C2)Ur A/i 
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where, the formations of the extra debugging time (At) and that of the extra 

faults removed (A/^) to reach r* from r again depend on the choice of the software 

reliability model. 

When the JM model is used, the formulations of the extra debugging time (At) 

and that of the extra faults removed (A/i) becomes; 

M 1 

Ai -1)] 

where 

M = JV + 

When the NHPP model is used, the formulations of the extra debugging time 

(At) and that of the extra faults removed (A/x) becomes; 

At = t* — t  = — [ln( — In Tj ) - ln( — In rj)] 

and 

A/i = /i(i*) - n{i) = - Inrjj 

The redundancy-cost function, /i^j(xj), depends upon the type of constraints 

involved. A constant function, an increasing function, or a decreasing function can 

be used as needed and should be described in a generic form but in a form that 

reflects the software development life-cycle. 

4.5.3 The type of resources 

The types of resources are: 
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• manpower 

• computer usage 

• project duration required (development time) 

• reliability 

• memory size 

• others 

The reliability cost functions related with those resources can be formulated as 

follows: 

1. Manpower and computer time (total cost) 

f l j  =  R C { r , r * )  =  C i t r ^ t  - f  A / /  <  b - ^  

2 .  Project duration required 

f l j  =  t r  A t  <  64 

where (r^t is the failure-identification time. It is assumed that the failure-

correction time is small enough to be ignored. 

3. Memory space 

f i j  =  M  <  65 
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4.5.4 Other problem formulation 

When the development cost is the major concern and the performance require

ment is the system minimum reliability, a general formulation of this problem is 

min (4-35) 
jes 

where rj is the projected component reliability. The main constraint could be 

Rs{X,R) > Rs^req. The decision variables that need to be calculated are X and 

R 

4.5.5 Redundancy cost function 

hij[xj) = k • xj (4.56) 

The cost of increasing a redundant component is usually less than 1.5 times of 

the original unit development cost; this is because redundancy components shared 

• the cost of specification, 

• some of the design cost, 

• most of testing cost, and 

• most of the documentation cost 

together with the original component. 
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4.6 Optimal Reliability and Redundancy Allocation Algorithm 

In most reliability optimization problems, the decision variables are the number 

of redundancies that are integers (integer programming or redundancy allocation 

problems), the component reliabilities that are real numbers (real programming 

or reliability allocation problems), or a combination of both (mixed-integer pro

gramming or reliability-redundancy allocation problems). In the methods that are 

based on differentiation, the decision variables must be continuous. Earlier stud

ies treat the number of redundancies as real variables. The real number answer is 

rounded off and the neighboring integer solutions are evaluated. The best feasible 

solution among the trials is taken as the final solution. This method works well 

if the problem is simple and the constraints are linear [46]. As the problem gets 

complicated, however, the rounding off and trial-and-error procedure become inef

ficient and inaccurate. In addition, this approach provides no theoretical reasoning 

and has difficulties in extending the integer programming problem to the mixed-

integer programming problem. Such an extension is frequently needed for reliability 

optimization. Furthermore, computation on the trial-and-error basis cannot be ef

ficiently automated. 

A method combining the Lagrange multiplier technique with the branch-and-

bound technique is proposed by Kuo et al. [40]. The Lagrange multiplier technique 

quickly reaches an exact real number solution that is close to the optimal solu

tion. Next, the branch-and-bound method is used to obtain the integer solution. 

This proposed method can solve both the redundancy allocation problem and the 

reliability-redundancy allocation problem. When dealing with the latter problem, 

only branching and bounding the integer variable is necessary. 
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4.6.1 Lagrange multiplier and Kuhn-Tucker conditions 

The Lagrange multiplier technique transforms the given constrained optimiza

tion problem into the unconstrained problem by introducing the Lagrange multipli

ers, Aj's. The unconstrained optimization problem, called the Lagrangian, becomes 

M 
Max L { X , R ,A)  =  R s { X , R ) -  ^ (4.57) 

Z = 1 

A'.s > 0. 

The necessary conditions for a maximum to exist form a system of simultaneous 

equations. The solutions to these simultaneous equations are extreme points in the 

constraints of the problem. The nonlinear simultaneous equations can be solved 

by any mathematical algorithm, such as Newton's method, which expresses the 

multi-variable root-finding problem. Subroutines for solving nonhnear simultane

ous equations are available in many mathematical libraries. Examples are ZSCNT 

and ZSPOW of IMSL [33], and ZONE of PORT mathematical library [53j. These 

subroutines are accurate, convenient, and efficient. However, they may not con

verge, and no feasible solution exist. 

4.6.2 The branch-and-bound technique in integer programming 

The branch-and-bound technique of integer programming for reliability opti

mization is stated in the paper by Garfinkel and Nemhauser [22]. In step 2 among 

those steps described in that paper, there are many criteria for selecting the variable 

for  b ranch ing  [27] .  Th is  s tudy  se lec t s  the  var iab le  Xj  tha t  min imizes  min{x* ,  l  — x*)  

over index i. 
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4.6.3 Randomized Hooke and Jeeves method 

The Hooke and Jeeves method requires only objective function evaluations and 

does not use partial derivatives. The Hooke and Jeeves method uses the iterative 

technique. This method is easy to apply for use on digital computers, since the tech

nique repeats its typical iterative moves: exploratory and pattern. The algorithm 

can quickly detect and follow a steep valley of a multi-variable function because the 

information accumulated in previous iterations may be used to find the most prof

itable search directions. For this reason, the method is a well-known direct search 

method for unconstrained minimization problems. 

However, the Hooke and Jeeves method has some difficulties when it is applied 

to constrained problems. We may expect the method fails to improve the objective 

function at the boundary, sharp corners, shallow regions, or ridges. 

Although the Hooke and Jeeves method can get the optimal solution in un

constrained minimization problems, slow convergence close to the optimum may be 

expected. As mentioned before, the Hooke and Jeeves method has some difficulties 

due to its moving in only one direction at a time when constrained minimization 

problems are considered. Some methods which modify the Hooke and Jeeves method 

are proposed. One way to solve these difficulties is to consider random move in n-

dimensions instead of one direction at a time when the search is frozen in a certain 

region. 

The simplest concept of random searching inside the n-dimensional hypercube 

is applied to exploratory move of the Hooke and Jeeves method. Since this method 

is unbiased in choosing the next moving point, it may be useful to find the location 

of a global minimum when the objective function has multiple minima. In addition, 
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it may solve the local difficulties of the deterministic methods (Hooke and Jeeves 

method). 

4.6.4 Combination of the randomized H-J method and the branch-and-

bound technique 

Branching and bounding only the redundancy variables are necessary and suf

ficient. The above steps can be directly applied to the mixed-integer programming 

problem. For a mixed-integer programming problem, only the integer variables need 

to be enumerated by the branch-and-bound procedure. The real variables are free 

of restriction after each step of the branch-and-bound technique. Then by using the 

randomized Hooke and Jeeves method, their new optimal values are obtained. The 

branch-and-bound process is stopped whenever all the integer variables find integer 

values. Multiple near optimal solutions may be achieved to provide management 

with several options and flexibility. 

4.7 Examples 

4.7.1 A pure software system 

To illustrate the procedure of optimal allocation of software reliability and 

redundancy, a two-stage series software system without a hardware component is 

employed. A brief description of procedure follows. At the end of the specification 

phase, the parameters can be estimated by the use of any of the complexity models. 

A solution derived from this optimization suggests a general direction for system 

design to management. 
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In the early state of the test phase, more accurate data can be collected as 

times between failures. The form of data should be based on the reliability model 

chosen in the design phase. The estimation of model parameters can be obtained 

on the basis of the real data collected. Next, an optimization problem can be set 

up, depending on the goal of the decision-making process. 

A formulation of the optimization problem considered is 

max Rs  = /(A,i) (4.58) 

subject to 

{Citrài. t j  + C2/irA/ij}  • kxj  < (4.59) 

The parameters, cost coefficient and other data needed to solve this optimiza

tion problem are given in Table 4.1. Further assume that 

= aX , 0 < a < 1 , 

•^2 = = ... = 

and 

(1 — a) A = ^2 4- A g 4- ... 4- A jy. 

With the data given in Table 4.1, the problem was solved by the randomized 

H-J method and the branch-and-bound method [40]. The optimal solution, shown 

in Table 4.2, was obtained. After 20 simulation runs with different starting points 

and random number seeds, the optimal solution of system reliability ranges from 

Rs = 0.805 to Rs = 0.825 with the total cost ranging from $73,100 to $74,800. The 

optimal solution also indicates that stage 1 needs two components to optimize the 

system. The results of this optimization should serve as important input for the 

decision-making process. 
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Table 4.1: Data for a numerical example 

stage 1 stage 2 

$ 0.00685 0.00164 
N 32.2 42 

a,(3 0.95, 0.20 
1, 0.1 

Cl'Cg 42, 40 

h 75,000 
k k=0.4 for redundancies 
s 20 

The final step is to allocate or reallocate the residual resources on the basis 

of resources required for each stage. Since the failure rate of each component is 

different, the time required to reach the projected failure rate or the reliability of 

each component is different. By using Equations 4.6 and 4.7 or Equations 4.13 

and 4.16, the resources required to reach the projected component reliability can 

be calibrated. In this example, stage one needs 26,427 units and stage two needs 

48,207 units of resources. Management should realize that assigning an accurate 

amount of resources (e.g., number of personnel) to each stage at the beginning can 

eventually save development cost, time, and efforts. 

4.7.2 A hardware and software mixed system 

The system in this example has two components in series. The first compo

nent (stage A) can not have any redundant component and the cost of developing 

hardware component is trivial. The reliability and development cost of hardware 
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Table 4.2: Optimal solution 

stage 1 stage 2 

2 1 
A,: 0.00685 0.00984 

cost $26,427 $48,207 
total cost $74,634 

Rs 0.81 

component of stage A is known. The second component (stage B) can have re

dundant components. Each hardware component in stage B has a corresponding 

software. The reliability and developing cost of hardware component of stage B are 

also known. Softwares of both stages A and B have not yet been developed. The 

failures of stage A and stage B are independent. However, there are common-cause 

failure among software redundancies of stage B. 

For the purposes of this study each component in the system is said to have 

failed if the output from corresponding component is not the same as it designed. 

The reliabilities and development costs for both hardware components are given 

in Table 4.3. The model used in this example is NHPP model. The procedure of 

optimizing the system is the same as the pure software system example discussed 

in the previous section. 

In the early state of the test phase, more accurate data can be collected as times 

between failures. The estimation of NHPP model parameters can be obtained on 

the basis of the real data collected and are given in the Table 4.4. Here, the resource 

usage parameters tr and /Xr are unit because the time used in this model assumed 

to be an actual calendar time. 
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Table 4.3: Component reliabilities and development costs 

900-hr 
reliability cost 

H/W comp. in stage A 0.985 2380 
H/W comp. in stage B 0.980 3400 

Next, an optimization problem can be set up, depending on the goal of the 

decision-making process. A formulation of the optimization problem considered is 

max R s  =  f { R , x )  (4.60) 

subject to 

{Citrùktj -f ' kxj < bi (4.61) 

With the data given in Tables 4.3 and 4.4, the problem was solved by the 

randomized Hooke and Jeeves method and the branch-and-bound method. The 

optimal solution, shown in Table 4.5, was obtained. The optimal solution indicates 

that stage B needs two components to optimize the system and enhances the system 

reliability up to 0.9814 from 0.9639. The results of this optimization should serve 

as an important input for the decision-making process. 
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Table 4.4: Data for a mixed system example 

stage A stage B 

a,b 0.0093, 138.37 0.023, 64 
a,(3 0.985, 0.120 

1, 1 
Ci.Cg 48, 40 

h 100,000 
k k=0.3 for redundancies 
s 900 

Table 4.5: Optimal solution 

1 stage 1 stage 2 

2% 1 2 

Ri 0.9970 0.9965 
cost 61,000 30,000 

total cost 100,000 

Rs 0.9814 
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5 SOFTWARE QUALITY MANAGEMENT 

Software technology has been criticized by dissatisfied users for its poor quality, 

cost overruns, and late delivery. It has been recognized that the modern software 

development methodologies, such as structured programming, structured analysis, 

structured design technique, and others, can hardly solve these problems. The main 

purpose of this chapter is to suggest protocols to handle these problems of software 

development by applying statistical quality control to every phase of the testing 

cycle. Today, management in the software industry knows that despite the most 

painful efforts to control product quahty, variation in product quality is unavoid

able. Through the use of process control techniques, such as statistical control 

charts, unusual variations in the software development process can be controlled 

and reduced. 

Finding faults after the failure occurrence can at least prevent software with 

low reliability from plaguing users, but this is not what statistical software qual

ity control is all about. The statistical software quality control affects not only 

the end product but also its process. It involves new practices, dealing with new 

personnel, learning new forms of communications, and providing a new concept of 

development. To develop high-quality software efficiently, the statistical software 

quality control procedure must be planned, with each specified step related to a 
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development activity. 

The software testing process is not exhaustive but instead is more represen

tative of a sampling process. If our testing process only observes portions of the 

entire population and removes only the discovered faults among the latent faults, 

the software testing process is fundamentally the same as the statistical sampling 

process of manufacturing. 

By use of Cho's SIAD (Symbolic Input Attribute Decomposition) [12] random 

test input for statistical quality control can be obtained. Cho defines SIAD as a 

tree element, representing the input domain of a software entity arranged in a linear 

list with the structure preserved by a set of tree symbols for random sampling. 

The SIAD tree represents the input domain of a piece of software in a form that 

facilitates construction of random test input units for producing random product 

units for quality inspections. Four types of SIAD trees have been developed: regular, 

weighted, ruled, and network. 

It is the intention of this study to provide a guideline or a standard procedure for 

using statistical quality control, to find the outcomes of variation, and to identify 

their causes in software development. The proposed process of software quality 

control may not be very radical but more a formalization of quality control practices 

on the software development and recording of them in a way that allows developers 

to know what they are doing and why they are doing it. 

The proposed process of software quality control is depicted in Figure 5.1 and 

steps involved with software quality control are; - • 

• Description of software quality variation outcome 
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• Data collection design 

• Data charting design 

• Concurrent data collection and charting 

• Variation analysis (Interpretation) 

• Cause identification 

• Cause elimination 

5.1 Review on S IAD Trees and Input Domain Reliability Model 

5.1.1 S IAD tree 

Up to 50 percent of the requirements for software development never get ad

dressed in a proper manner in the industry. Specifically, in current software devel

opment practice, test requirements are missing from the requirements specification. 

Software engineering (development) requirements, software requirements, test re

quirements, and documentation requirements are four parts of necessary specifica

tion requirements. 

After identifying the software engineering goals and principles, the detailed 

input, output, and processing requirements should be specified. These require

ments are equivalent to raw materials, industrial processing, and product design 

requirement in the manufacturing industries. One of the way to identify the input 

requirements is using a convenient form called the SIAD (Symbolic Input Attribute 

Decomposition) tree for software design and test design. 
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Figure 5.1; Software quality control process 
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The statistical quality control begins by taking random sampling from input 

domain which has been specified by the SIAD tree. Four types of SIAD trees have 

been developed by Cho so far: regular, weighted, ruled, and network. 

5.1.1.1 Regular SIAD tree Figure 5.2 shows an example structure. The 

symbols A, B, ..., U are called the tree elements. A tree symbol in Table 5.1 shows 

the relationship of an element to other elements. A tree so arranged is a regular 

SIAD tree, as each element is index column. An SIAD tree is used a tool for 

describing the input domain of a piece of software and as a basis for construction 

of test input units using random sampling, which makes it possible to apply the 

principle of statistical quality control. 

A set of random numbers between 1 and N is produced using a random number 

generator. The element with its index equal to the random number is selected. Say, 

two elements are to be taken from the tree using the random numbers 3 and 8. The 

elements D and L are drawn for constructing the test input unit. An element is 

tested with all other relevant elements by way of tree symbols. Table 5.2 shows the 

list of relevant elements with each sampled element. This listing gives a meaningful 

description of each sampled element for guiding test input unit design. 

5.1.1.2 Weighted SIAD tree A weighted SIAD tree is identical to a reg

ular SIAD tree, except that each tree element in the weighted SIAD tree is indexed 

with selected weights or multiple indices. Table 5.3 shows an example of a weighted 

SIAD tree modified from the regular SIAD tree shown in Table 5.1. With the control 

of weights, different tree elements can have different probabilities of being sampled 

for test input unit construction. 
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Figure 5.2: A tree structure 

Table 5.1: A regular SIAD tree 

Index Tree Symbol Tree Element 

1 A 
2 -^1,1 B 

3 D 

4 ^1,1,2 E 

5 ^1,2 C 

6 ^^1,2,1 F 

7 -^1,2,2 G (numerical) 

8 -^1,2,2,1 L (lower bound) 

9 ^1,2,2,2 U (upper bound) 
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Table 5.2: Test element 

Index Tree Symbol Tree Element 

1 A 
2 B 

3 -^1,1,1 D 

1 A 
5 ^1,2 C 

7 -^1,2,2 G 

8 '^1,2,2,1 L 

Table 5.3: A weighted SI AD tree 

Weight Index Tree Symbol Tree Element 

2 1-2 A 
4 3-6 -^1,1 B 

8 7-14 -^1,1,1 D 

6 15-20 -^1,1,2 E 

10 21-30 -^1,2 C 

2 31-32 ^1,2,1 F 

5 33-37 -^1,2,2 G (numerical) 

12 38-49 '^1,2,2,1 L (lower bound) 

2 50-52 '^1,2,2,2 U(upper bound) 
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5.1.1.3 Ruled S IAD tree A ruled SIAD tree is similar to a regular SIAD 

tree, except that rules for using the inputs are incorporated into the tree. The 

rule index and subindex columns are added to regular SIAD tree. These rule index 

columns specify the general restriction of each tree element. 

5.1.1.4 Network SIAD tree The network SIAD tree can be used for ap

plications in which the regular, weighted, and ruled SIAD trees cannot conveniently 

represent the software input domain. Such applications include operating system, 

communication networks, and compilers. Using the network SIAD tree, test input 

units can be constructed systematically for testing the syntax entity by generating 

a random number of elements. 

5.1.2 Input domain reliability model 

5.1.2.1 Nelson model Nelson [51] has derived a statistical basis for soft

ware reliability assessment based on error correlation with program structure. Data 

sets are used to execute the program structure. Each specific input data set pro

ceeds through a sequence of segments, with a branch to a new segment taking place 

at exit of each segment. The sequence of segments in the execution of the program 

is called a logic path of the program. 

For each input data set, the program specifies a computational process by 

means of which a computer program can computer the function value which the 

computable function assigns to that input data set. Assuming that inputs are se

lected independently according to some probability distribution function, the func
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tion becomes 

R { i )  =  [i?(i)r = {RY (5.1) 

where R  =  -R(l). The reliability R  can be defined as follows: 

i? = 1 — lim —— (o.2) 
n^oo n 

where n is the number of runs and my is number of failures in n runs. This is the 

operational definition of software reliability of one run. 

In the operational phase, if errors are not removed when failures occur, the 

probability of experiencing k failures out of M randomly selected runs follows a 

binomial distribution. 

Pk = 

( \ 
[ 1 -  R { l ) f y R { l ) y ^ ^ - ' ' .  (5.3) 

\ ^ / 

During the testing phase, a sequence of M tests are selected randomly from the 

input space without repeating the same test. Then the probability of k failures out 

of M runs follows a hypergeometric distribution. 

If a sequence of k runs are not selected randomly from the operational profile, 

R(l) may be different for each run. The maximum likelihood estimate of R(l) can 

be obtained by running some test cases. It can be expressed as 

^(1) = 1 ^ (3-4) 

where Fi is the number of test cases that cause failure and Nf is the number of 

test cases. Since the number of elements in the input space is a very large number, 

the number of test cases has to be large in order to have a high confidence in 

estimation. To simplify the estimation of R(l), Nelson modifies the above basic 
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model by assuming that the input space is partitioned into m sets. As test cases 

are selected from each partition and all the errors from the test cases are removed, 

the reliability of one run can be formulated as 

-R(l) = -/i) (5.5) 
i  

where is the probability that an input is from partition i and is the probability 

that an input from partition i will cause failure. The values of /j's are given by 

Nelson for a quick estimation of the software reliability. 

5.1.2.2 Input domain based Stochastic model The input domain based 

Stochastic model proposed by Ramamoorthy and Bastani [54] starts from the as

sumption of reliability growth models. Inputs are selected randomly and indepen

dently from the input domain according to the operational distribution. This is a 

very strong assumption and will not hold in general. The relaxed assumption for 

general growth model is that input are selected randomly and independently from 

the input domain according to some probability distribution (which can be change 

with time). 

This means that the effective error size varies with time even though the pro

gram is not changed. This permits a modeling of the testing process. Unlike the 

failure rate model which keeps track of the failure rate at failure times, this model 

keeps track of the reliability of each run given a certain number of failures have 

occurred. 

Let 

j number of failures experienced 
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k number of runs since the failure 

T j { k )  testing process for the run 

Vj(k) size of residual errors for the run 

X j  error size under operational inputs 

f(Ty(k)) severity of testing process 

Then 

i=l 
(5.6) 

In the above equation, let 

f { T j { k ) )  =  1. 

The testing process is assumed to be identical to the operational environment. Then, 

=  ̂ j - 1  -  ̂j -

Intuitively, errors which are caught later have a smaller size than those which are 

caught earher. However, this is true only in a probabihstic sense. This can be 

modelled by requiring that 

4 -

Therefore, 

R A k )  = £[(1 - A,)«^ 

k 

\ ' / 

k f 

E 



www.manaraa.com

95 

5.2 Software Quality Control Process 

5.2.1 Description of software quality variation outcomes 

The goal of software quality control is to control and, eventually, reduce the 

unusual variation in the software development process. The first step in the software 

quality control process is to describe the software quality variation outcomes. The 

software quality variation outcomes are direct indications of abnormalities observed 

in statistical control charts. These outcomes of variation should be distinguished 

from the causes of variation. These outcomes are the possible consequences of causes 

rather than causes themselves. It is very important to enumerate and specify all 

outcomes of variation before the data collection design phase. Without a specific 

purpose in mind or a complete understanding of how the data are to be used, 

data collection and data analysis are not meaningful. A complete understanding 

of the outcomes of variation allows more effective use of statistical quality control 

techniques and makes the elimination of variation easier. 

A list of possible outcomes of variation of software development is subjective. 

The following all outcomes of variation may not be applied to all software, nor be 

complete in the sense of representing all software projects. A historical record of 

quality control analysis on quality variations and a careful analysis on the quality 

control charts of software under development help managers to investigate more 

outcomes of variation. Suggestions on the study of outcomes of variation follow: 

• More-than-error-prone module: Each module has a different structure, a dif

ferent algorithm, a unique function to perform, and it is developed by a dif

ferent group of people. Therefore, each software module has a different size 
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and distribution of errors. As module testing goes on, some modules never 

get better; testing creates as many new faults as it debugs. It is desirable to 

identify software modules that are behaving in significantly different ways. 

More-than-error-prone personnel: Since each module has a different func

tion to perform and each software developer has a different educational back

ground, a certain type of module may not be suitable for a certain developer. 

It is necessary to know who tends to create more errors than others in which 

type of module. Manager may want to assign that personnel to other type of 

module. 

Near out of control system: When 1) any serious logic error occurs in the pro

gram structure, 2) the software does not fit the system's external specification, 

or 3) the system's initial objectives are misinterpreted, a few adjustments to 

the software system will not satisfy the user's requirements. Management's 

attention is required. 

Slow response: A software system may response more slowly than expected 

to a certain type or amount of input data. Slow response may require the 

whole module or system to be rewritten with a new algorithm or a different 

software language. This phenomenon can happen in any testing stage. 

Unusually low failure rate: Gardiner and Montgomery [21] pointed out that 

an unusually low failure rate could be a potentially troublesome situation. 

This is also a sign of system variation. It is the indication of either better 

quality or application of an ineffective or insufficient testing method. Again, 

management's attention is required. 
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• Unusually long bug-elimination time: Examination and study of statistical 

data on fault elimination time should be conducted. Some faults may be easy 

to detect but not necessarily easy to collect them. Some faults may behave 

the other way. It might be useful to find the correlation between the number 

of bugs eliminated and the time spent to eliminate them. These statistic helps 

the supervisor not only to find unusual variations in the bug-elimination phase 

but also to predict the total elimination time required for the given initial 

number of bugs. 

• others 

5.2.2 Data collection design 

Once the software quality variation outcomes are specified, a quality-related 

data collection should be planned on the basis of each quality variation outcome be

cause a small or moderate amount of intelligently collected data is worth more than 

a ton of less intelligently collected data. The purpose, methods, and tools of test

ing change throughout the various phases of the software development. The range 

of techniques in testing is also extremely broad starting from a syntax-checking 

within the compiler to design review where the specifications and requirements are 

tested. The sequence (stage) of testing progress is also numerous. First of all, each 

software module is independently tested in module testing stage. Syntax-checking, 

comprehensive checking, various stress points checking, and extremes of the range 

of variables checking are the variety of module testing. Next, the program structure 

and the interfaces among these modules are checked in integration testing stage. 

Next, the complete software system of which modules are interconnected is 
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tested under the simulated user environment in the system testing stage. At last, 

the acceptance test is conducted to check the requirement of software system. In 

this stage, the developer wants to demonstrate the absence of error, in other words, 

to convince the purchaser that how good the software is. Meanwhile, the user wants 

to see the presence of error (i.e., how bug-free software is under the unusual cases). 

The design of data collection should be done based on each quality variation 

outcome of interest, not based on the stage of testing or the methods of testing 

because the outcomes of quality variation are the facts that the development team 

wants to detect. The design of data collection could be unique for each quality 

variation outcome of interest. On the basis of the quality variance outcome, the 

following questions should be answered. Some of the questions that need to be 

investigated are: 

• which data should be gathered 

• how data should be collected 

• who should gather data 

• when data should be collected 

• how much data should be collected 

5.2.2.1 Which data should be collected The type of data collected 

depends on the goal of software quaHty control (e.g., the outcomes of variation). 

The followings are some examples of data types based on its outcomes of variation. 

1. More-than-error-prone module 

If one of the goals is to detect more-than-error-prone module, it is rational to 
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collect failure rate (e.g., number of faults detected per 100 program lines) per 

quality measure for all modules. Here, the quality measure is the number of 

test cases executed. 

When data are collected based on time-domain model, the quality measure 

becomes the execution time for debugging. 

2. More-than-error-prone personnel 

Failure rate (e.g., number of faults discovered per 100 lines) per quality mea

sure (the number of test cases executed) is collected for all development per

sonnel. 

3. Near out of control state system 

Failure rate (e.g., number of faults discovered per 1000 lines) per quality 

measure is also collected starting from the integration testing stage. Here, 

the quality measure could be number of test cases executed, calendar time, or 

execution time. 

4. Slow response 

Response rate (e.g., response time per 1000 line) per volume of data for all 

modules or system is collected. 

5. Unusually low failure rate 

All data types described above are considered as data for the detection of 

unusually low failure rate outcome. 

6. Unusually long bug-elimination time 

Fault collection time of each fault can be a good candidate for the analysis of 
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variation in bug-elimination process. 

5.2.2.2 How data should be collected Data should be collected in a 

format that makes it immediately useful and easy to analyze. Data should be 

gathered on carefully designed check sheets so that the collected data doesn't need 

to be transferred to another form. 

5.2.2.3 Who should gather data Data should be collected those indi

viduals most familiar with the process of interest. They should be properly trained 

in data collection techniques and provided with adequate time and resources. Fail

ure identification personnel and failure correction personnel belong to this category. 

These personnel should be well trained to avoid any misrepresenting data. 

5.2.2.4 When data should be collected 

• specification phase 

• design phase 

• testing phase 

- module testing 

- integration testing 

- system testing 

- acceptance testing 

Table 5.4 illustrates the relationship between testing stage and the outcomes of 

variance. The outcomes of variance should be observed under the corresponding 
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testing phase (the one which has the check point). For example, it is better to find 

more-than-error-prone module in module testing phase. Finding more-than-error-

prone module after module test is not desirable. 

5.2.2.5 How much data should be collected What is the optimal sam

pling size? How much data should be corrected? These questions have been a big 

issue in statistical quality control. In software development, data collection basi

cally lasts the end of software life. However, the size of data and the amount of data 

collected depends on the goals and objectives of the study, the degree of precision 

designed, and available resources. The optimal size and amount of sampling which 

can achieve the best results in statistical software quality control should be further 

investigated. Moreover, when an error is discovered and corrected, the software is 

actually changed. Because of the imperfect debugging, the software may be intro

duced new errors. In the case like this the issue, here, is whether all previous test 

case should be repeated or not. Further investigation is also required. 

5.2.3 Data charting design 

In the previous software quality variation description phase, the list of possible 

outcomes of variation are not completed. Since these outcomes of variation in 

software development are subjective, hunting down other outcomes of variation 

subject to current software is an inevitable step. 

Charting data into various statistical quality control charts helps developers 

not only 

1. to get statistical evidence of variation, but also 
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Table 5.4: Outcomes vs. I*liases 

more than more than near out of slow unusual unusual long 
error prone error prone control response low elimination 

module personnel state system failure rate time 

module test y y v/ y y 
integration test V y y y y . 

system test y /̂ y y 
acceptance test y 
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2. to find more outcomes of variation. 

First of all, simple histograms, time plots, and other scatter plots so called 

preliminary control charts are invaluable tools to hunt down outcomes of variation 

and to eliminate causes of variation. Moreover, these plots give early signal of 

variation and check the correlation of variables under study. 

1. histogram: 

Making specifications on a histogram is a very effective way of communicating 

to development personnel and fault-discovery personnel what needs to be done 

to improve the performance of software development. Eventually, histogram 

gives a new idea to eliminate the source of variation to improve the system. 

Ex) Pareto diagram: focuses attention on biggest problems first. 

2. time plot; 

Constructing a simple time plots before constructing statistically controlled 

charts might hint at the reliability of system. The scatter represents more 

unreliability as more time goes. 

3. scatter plot: 

Scatter plot is the simplest way to study correlation between two variables. 

The type of data collected for each outcome of variation was already discussed. 

Correlation of two variables (failure rate vs. the number of test batch) should 

be checked to construct the statistical quality control chart. 

Then, ignoring the number of test cases executed, divide the data into con

venient subgroups and plot a standard control chart for failure rate. In other 
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words, the data of failure rate should be re-examined by changing the sample 

size. 

Second, the statistically controlled regression control chart should be con

structed and analyzed to find the evidence of unusual variation and control the 

software process. The failure rate (number of fault discovered per a group of lines) 

collected as the testing continues can not be a linear function of the number of test 

units executed over the entire range of testing phases (see Fig. 5.3). In this study 

for simplicity the correlation of these two variables is assumed to be exponentially 

distributed. As the testing continues, the number of faults discovered tend to de

crease. A collection of failure rate points during software testing phase shows the 

possibility that something other than the standard Shewhart control chart might 

be desirable. Therefore, the only reasonable choice among the statistical control 

charts in this case is the regression control chart. 

For instance, after a glance at simple histogram or time plots, a suspicion of 

the existence of variation were found in some modules. Software development team 

wants to find stronger evidences on the existence of more-than-error-prone module 

(if there is any) during module testing. The constructed regression control chart is 

more carefully examined, especially for those of modules which showed a suspicion 

of the existence of unusual variation. 

Assuming linearity (after the transformation of variables), the line which best 

fits trended data, such as those in Fig. 5.4, may be found by the statistical technique 

of least squares. This is nothing more than a device for fitting m and b in the straight 

line equation, y = mx + b. With sets of ordinate values (y's) and abscissa values 
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(x's), m and b may be found from 

n { E x y ) - { E x ) { E y )  ,  .  

,  . ( Z z ) ( Z z 2 / ) - ( Z ï / ) ( E z 2 )  

E » ) 2 - n ( E « 2 )  

where n = the number of pairs oî  x ,  y  values. 

Here, x becomes the logarithm of failure rates (i.e., the number of faults dis

covered / a group of line / the number of test cases executed) and y becomes either 

the logarithm of time periods or that of batches number of testing units. With the 

equation of the straight line established, the standard error of estimate (cr) is found 

to use in calculating control limits. 

^ ̂  (l/n)E[(a; -a!)(y-y)] 
(TxCTy 

cr = cry\J\ - (5.10) 

The only remaining task to complete the control chart in Fig. 5.4 is to decide 

how to put control limits around a line of regression. The decision is closely related 

to the cost of system (or module) rejection. No solution necessarily universally 

correct. However, a general rule could be that module testing phase has more tight 

control limits than integration and system testing phase do. 

Perhaps, 2cr or 3cr control limits with tight warning limits may be suitable 

for module test. Meanwhile, 3(T or 4cr control limits with loose warning limits are 

justified for integration and system testing phases. Basically, these judgement can 

be made based on historical records or the expectation of quality of underdeveloping 

software system. 
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J I J L 
1 2  3  4 5 6  7 8 9  1 0  

x' = NUMBER OF TEST CASES EXECUTED 

Figure 5.3: Regression line 

3ct CONTROL LIMIT 

X = log X' 

Figure 5.4: Transformed regression line 
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5.2.4 Concurrent data collection and charting 

It should be pointed out that the goal of software quality control is not only 

to find and locate these software faults, but also to find and reduce the sources of 

these variation's outcomes. So that, the quality of both underdeveloping software 

and future software can be improved. Supervisor keeps in mind that variation in 

a measurement comes from many sources and should working together with fault-

correction personnel and fault-discovery personnel to find better way of detecting 

any quality unusual variation. 

5.2.5 Variation analysis 

A simple point that strayed beyond preset boundaries (limits) is interpreted as 

an action signal. In other words, the point beyond boundaries is an evidence that 

something is wrong. 

5.2.6 Cause identification 

No matter how carefully specified, designed, and developed software is, the 

natural variation (sometimes called background noise or chance causes) will present. 

The natural variation is the result of "nonassignable" causes. The causes that can 

be identified or assigned is called assignable causes. The assignable causes can 

create the unnatural variation. A process that is operating with only nonassignable 

causes of variation present is said to be in statistical control. 

The final objective of this chapter is to detect and remove these assignable 

causes not nonassignable cause. These unnatural variations may be divided into 

two types: 
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1. relatively simple: due to a single assignable cause 

2. relatively complex: combination of more than two assignable causes 

In the former case the cause of variation can usually be found without signif

icant effort. In the latter case major variation should be traced by stratifying or 

segmenting a data set along the lines of possible sources of variation. The following 

methods of separating data [30] are used in engineering studies: 

• Method A: single break down 

• Method B: elimination of variable 

• Method C: rearrangements of data 

• Method D: designed experiments 

Followings are the type of assignable causes of variation and the tools which helps 

to hunt down the assignable cause of variation. 

The assignable cause of variation are: 

• Assign new employers (developer or designer, etc.) to an underdeveloping 

software without sufficient understanding of current software 

• insufficient and incorrect specifications 

• misunderstand specifications 

• insufficient and incorrect testing 

• failure to measure the effects of assignable causes and to reduce them 
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• delays in reporting results of analysis 

• improper usage of algorithm 

• improper usage of language 

• inadequate monitoring of software process 

• improper classification of causes (assignable, nonassignable) 

• incorrect information about the data collection form 

• insufficient instruction on the new data collection form 

• others 

More suspected assignable causes need to be enumerated to trace down the 

causes effectively. However, it is not possible to write down all possible assignable 

causes because the characteristics of these variations are unpredictable, unnatural, 

inconsistent, and nonhomogeneous. So, when any other evidence or suspicion of the 

existence of assignable causes were found, separate the data according to suspected 

sources. 

Other tools that might help supervisor to hunt down the assignable causes are: 

• fish-bone diagram 

• cause and effect diagram 

5.2.7 Causes elimination 

Before the elimination of the assignable cause that is suspected as the cause 

of unusual variation, determine whether the real cause have been found. After the 
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elimination of the assignable cause, it is important to check the process returns to 

stable state. 

5.3 Use of Statistical Control Techniques 

As Cho [12] claimed in his work, one of the most important design step that is 

missing during the modeling phase in the current software industry is input descrip

tions. During requirement specification, the types of input data and the rules for 

using input data should be specified and refined. To do this, we will use the SIAD 

tree which will help not only to find the location of errors but also to construct the 

quality control charts. The types of SIAD trees are regular, weighted, ruled and 

network. 

In the software development process, each phase of development should have 

a quality goal or performance measure. The quality performance measure, first of 

all, needs to be defined as a vector of quantitative measure based on important 

variables that can be tracked over program operation time. The vector consists of 

attributes such as failure intensity along with its confidence limits, failure removal 

capacity, hardware-related software, and so forth. 

Second, the statistically controlled r-chart, run-chart, p-chart and other re

gression techniques will be constructed and analyzed to monitor and control the 

software process. Finally, the statistically controlled software system's performance 

will be demonstrated and predicted in the immediately followed life-cycle phase. 

This will relate to additional resource (e.g., computation time, failures, and per

sonnel) needed to achieve a specified goal, such as reliability, understandability, 

efficiency, structure. 
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5.4 Use of Fault Tree and Event Tree Analyses 

Regardless of how refined and correct the product is, the degree of quality of 

conformance achieved varied from one product unit to the next. The statistical 

evidence of instability of the software development system should thus be carefully 

examined. Hence, a standard and generic software development system will be 

carried out by applying Deming's management philosophy. 

It is obvious that the type of action required to reduce special cause of variation 

is totally different from the action required to reduce common causes variation 

from the system itself, and those common causes could be any or a combination of 

possibilities. 

• poor design of product 

• poor design of software 

• insufficient and incorrect specifications 

• poor instruction and poor supervision 

• insufficient and incorrect testing 

• failure to measure the effects of common causes and to reduce them 

• failure to provide programmers with information in statistical form that shows 

them where they could improve their performance and the uniformity of the 

product 

• incoming materials (such as computer languages, existing software mathemat

ical packages) are not suited to the requirement 
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o others. 

According to Dr. Deming's experience [15], the main cause of most troubles 

and the greatest possibility for improvement belong to the system not the workers. 

For instance, slow response and numerical error may require the whole module to 

be rewritten by use of a new algorithm. An event tree and fault tree analysis will 

be used to identify the critical flaws in the software development, to distinguish a 

special cause of variation from a common cause of variation, and to aid management 

in taking the proper action required to reduce the given cause of the variation. 

Consequently, this event tree and fault tree analysis reduces risk (e.g., high failure 

rate) due to common cause failures. Risk analysis has shown that no matter how 

small events are, they can be amplified to increase system failure. A cost factor 

incurred in each branch of the above analysis will be estimated. Quantity and 

variety of common causes will be determined. 
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6 CONCLUSIONS 

In this study, a new procedure bases on system optimization concept for im

proving software reliability has been provided. The software reliability-related cost 

function and the reliability function of software redundancy with the common-cause 

failure model have been investigated and provided. In the middle of the concur

rent coding and test phase, the system and component reliabilities are examined. 

Since more information about the developing software, such as failure intensity or 

failure rate, is readily available at this time, more accurate system and component 

reliabilities can be reevaluated with updated data. 

If the system and module reliabilities don't meet the reliabilities required, the 

resources can be reallocated and the system optimization problem can be solved, 

again with the updated data. A set of solutions along with determined decision 

variables can be obtained. The management chooses a solution from among the new 

multi-optimal solutions obtained. The decision to be made is whether to improve 

module's reliabilities or to increase the number of redundancies of some modules 

through manageable ways. This iteration continues until the current rehabilities 

meet the requirement. 

In the software quality management chapter, a standard procedure using sta

tistical quality control for eliminating the causes of variation and improving the 
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quality of software has been provided. In the preliminary control charting phase, 

the correlation of two variables based on input domain testing should be examined. 

When the distribution of two variables can not be clearly identified, the data of 

failure rate should be re-examined by changing the sample size. The simplest way 

of doing this is to divide the data into several subgroups by ignoring the number of 

test cases executed. 

It is the management responsibility to detect all unusual variations and to 

remove all assignable causes. The remaining variation must be left to nonassignable 

causes, so that, the process remains in the state of statistical control. 

A lot of work should be done in developing a good testing method. At least 

the standardization of testing method should be done. There are over 80 software 

reliability models proposed. However, many developers have claimed that none of 

those software reliability models works very well. The author believes that many 

software reliabihty models can effectively quantify the quality of software and have 

proven their accuracy and effectiveness in the application of many mid-size soft

wares. The problem is not in the correctness of those software models but in the 

collection of good quality data that is meaningful and sound in statistically. In 

order to get quality data, a good testing method should be developed. The testing 

method should be able to provide sound data consistently for any kind of software. 

There is a question about the software reliability as being a good software 

quality measurement. The traditional design techniques and testing methods are 

too customized to get statistically sound data. Until there is a good testing method, 

the quality of software may be quantified by use of other tools, say, the reliabihty 

bypass models. 
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As the extension of this study, reliability models for different configurations of 

system can be derived. Cold standby redundant system and multi-version program

ming are good examples. The reliability model for cold standby redundancy can 

be derived by modifying the Markov process discussed and that of multi-version 

programming can be derived by use of probability theorem. 

In both cases, the analytical system reliability function for generic N-component 

should be evaluated. In the optimization problem formulation, both the available 

resources and system parameters could vary over their expected range either because 

of unexpected resource change or because of the nature of statistical uncertainties 

of the estimated parameters. 

The full set of perturbations can be ordered by investigating the sensitivity of 

all responses to one parameter in a single iteration. Therefore, the major drawback 

of the conventional perturbation method is that the same procedure has to be 

repeated for every decision parameter. A second difficulty arises if an analytical 

form of the system model is not readily available. In this case, the sensitivity 

coefficients obtained from the perturbation method are only approximations. 

The adjoint method is a promising alternative to the above dilemma. The 

adjoint method requires a detailed system model, which is proposed in Chapter 4. 

Once the detailed system model is fabricated, a single adjoint run is to be designed 

to produce exact sensitivity coefficients for all input parameters. 

This proposed adjoint method can 

« provide the management quick response to check the robustness of the optimal 

design of Task 1, which will also help reevaluate all possible outcomes, 

• identify the critical parameters employed in the system optimization and cross 
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examine the effects due to SIAD tree, fault tree, and event tree analysis 

vided in Chapter 5, and 

help maintain an "in-control" state for future software development. 



www.manaraa.com

117 

7 ACKNOWLEDGEMENTS 

I would like to express my appreciation to many persons who assisted me in 

this research and in the completion of my Ph.D. program. Dr. Way Kuo, my 

major professor, deserves special recognition for his encouragement and guidance 

throughout my research. Without his assistance, consideration, and patience, this 

research never would have been accomplished. Without his expertise, insight, and 

criticism, four invaluable papers which we have published never would have been 

accomplished. 

I also would like to thank my committee members: Dr. Howard Meeks, Dr. Vin

cent Sposito, Dr. William Meeker, Dr. Géraldine Montag, all of whom provided valid 

criticisms and comments concerning my final dissertation. My special thanks go to 

Dr. Montag for the opportunity to work under her on the course 'work measurement' 

to broaden my experience in teaching and for professional growth while serving as 

a teaching assistant. Many thanks to Dr. Yasuo Amemiya for his hospitahty and 

valuable assistance. 

Last, but most importantly, I want to acknowledge the members of my family. 

First, I'd like to thank my parents for providing me with a lot of valuable encourage

ment and support throughout. This research would not have been possible without 

my parents' dedication to my education. 



www.manaraa.com

118 

Next, I'd like to thank my daughters, Hanna and Min-sun, for never complain

ing about having a father who was frequently preoccupied. I can't say enough to 

thank my wife, Ik-Ja. She was always there to give me what I needed most, care, 

forgiveness, love. She has endured so much and asked so little. I do always love her 

and dedicate this work. 

To all of these, other family members, and other friends, I am most humbly 

grateful. 



www.manaraa.com

119 

8 BIBLIOGRAPHY 

[1] Aho, A. The Design and Analysis of Computer Algorithms. Addison-Wesley, 
Reading, Mass., 1974. 

[2] Akiyama, F. "An Example of Software System Debugging." IFIP Congress, 
Ljubljana, Yugoslavia, 1971, 353-359. 

[3] Barlow, R. and Scheuer, E. "Reliability Growth during a Development Testing 
Program." Technometrics, 8, No. 1 (February 1966): 53-60. 

[4] Barlow, R., et al., eds. Reliability and Fault Tree Analysis. Society for Industrial 
and Applied Mathematics, Philadelphia, 1975. 

[5] Basili, V. R. "Quantitative Software Complexity Models: A Panel Summary." 
Proc. Workshop Quant. Software Models for Reliability, Complexity, and Cost: 
An Assessment of the State of the Art, Oct. 9-11. IEEE, New York, 1979, 
243-245. 

[6] Basili, V. R. and Hutchens, D. H. "An Empirical Study of a Syntatic Complex
ity Family." IEEE Trans. Software Engineering, SE-9, No. 6 (1983): 664-672. 

[7] Basili, V. R., Selby, R. W. and Phillips, T. Y. "Metric Analysis and Data 
Validation across Fortran Projects." IEEE Trans. Software Engineering, SE-9, 
No. 6 (1983): 652-663. 

[8] Belady, L. A. "On Software Complexity." Proc. Workshop Quant. Software 
Model for Reliability, Complexity, and Cost: An Assessment of the State of the 
Art, Oct. 9-11. IEEE, New York, 1979, 90-94. 

[9] Boehm, B. W. Characteristics of Software Quality. TRW and North-Holland 
PubHshing Co., Amsterdam, The Netherlands, 1978. 

[10] Brooks, H. " A Discussion of Random Methods for Seeking Maxima." Opera
tions Research, 6 (March 1958): 244-251. 



www.manaraa.com

120 

[11] Chen, E. T. "Program Complexity and Program Productivity." IEEE Trans. 
Software Engineering, SE-4, No. 2 (1978): 187-194. 

[12] Cho, C. K. Quality Programming. John Wiley & Sons, New York, 1987. 

[13] Cooper, J. D. and Fisher, M. J. Software Quality Management. A Petrocelli 
Book, New York, 1979. 

[14] Coutinho, J. S. "Software Reliability Growth." IEEE Symp. Comp. Software 
Reliability (1973): 58-64. 

[15] Deming, W. E. Out of the Crisis. Massachusetts Institute of Technology, Cam
bridge, Mass., 1986. 

[16] Dickson, J., Hesse, J., Kientz, A. and Shooman, M. "Quantitative Analysis of 
Software Reliability." Proc. Ann. Reliability and Maintainability Symp., IEEE 
(January, 1972): 148-157. 

[17] Duran, J. W. and Wiorkowski, J. "Capture-recapture Sampling for Estimat
ing Software Error Content." IEEE Trans. Software Engineering, SE-7, No. 1 
(1981): 147-148. 

[18] Echhardt, D. E., Jr. and Lee, L. D. "A Theoretical Basis for the Analysis of 
Multi-version Software Subject to Coincident Errors." IEEE Trans. Software 
Engineering, SE-11, No. 12 (1985): 1511-1517. 

[19] Endres, A. "An Analysis of Errors and Their Causes in System Program." 
IEEE Trans. Software Engineering, SE-1, No. 2 (1975): 140-149. 

[20] Freeman, H. and Lewis, P. M. Software Engineering. Academic Press, New 
York, 1980. 

[21] Gardiner, J. S. and Montgomery, D. C. "Using Statistical Control Charts for 
Software Quality Control." Quality and Reliability Engineering International, 
3 (1987): 15-20. 

[22] Garfinkel, R. S. and Nemhauser, G. L. Integer Programming. John Wiley & 
Sons, New York, 1972. 

[23] George, J. S. and Wolverton, R. W. "An Analysis of Competing Software 
Reliability Models." IEEE Trans. Software Engineering, SE-4, No. 2 (1978): 
104-120. 



www.manaraa.com

121 

[24] Glass, R. L. "Persistent Software Errors." IEEE Trans. Software Engineering, 
SE-7, No. 2 (1981): 162-168. 

[25] Goel, A. L. and Okumoto, K. "Time-dependent Error Detection Rate Model 
for Software Reliability and Performance Measures." IEEE Trans. Reliability, 
R-28, No. 3 (1979): 206-211. 

[26] Graham, R. M. Performance Prediction. Advanced Course on Software Engi
neering, No. 81. Springer-Verlag, New York, 1973, Chapter 4. 

[27] Gupta, 0. K. and Ravindran, A. "Branch-and-bound Experiments in Convex 
Nonlinear Programming." Management Science, 31, No. 12 (1985): 1533-1546. 

[28] Halstead, M. H. Elements of Software Science. Elsevier, New York, 1977. 

[29] Hammersley, J. M. and Handscomb, D. C. Monte Carlo Methods. Methuen, 
London,1975. 

[30] Handbook of Statistical Quality Control. Western Electric Co., Charlotte, North 
Carolina, 1956. 

[31] Hooke, R. and Jeeves, T. A. "A Direct Search Solution of Numerical and 
Statistical Problems." J. ,4s50c. Comp. Mach., 8 (April 1961): 212-229. 

[32] Huang, X. Z. "The Hypergeometric Distribution Model for Predicting the Re
liability of Software." Microelectronics and Reliability, 24, No. 1 (1984): 11-20. 

[33] IMSL Library Reference Manual. International Mathematical and Statistical 
Libraries, Inc., Houston, Texas, 1984. 

[34] Iyer, R: K. and Valardi, P. "Hardware-related Software Errors: Measurement 
and Analysis." IEEE Trans. Software Engineering, SE-11, No. 2 (1985): 223-
231. 

[35] Jacoby, S. L. S., Kowalik, J. S., and Pizzo, J. T. Iterative Methods for Nonlinear 
Optimization Problems. Prentice-Hall, Englewood Cliffs, 1972. 

[36] Jelinski, Z. and Moranda, P. B. "Software Reliability Research." in Statistical 
Computer Performance Evaluation, W. Freiberger, Ed., Academic Press, New 
York, 1972, 465-484. 

[37] Jensen, R. W. and Tonies, C. C. Software Engineering. Prentice-Hall, Engle
wood Cliffs, 1979. 



www.manaraa.com

122 

[38] Knight, J. C. and Leveson, N. G. "An Experimental Evaluation of the Assump
tion of Independence in Multi-version Programming." IEEE Trans. Software 
Engineering, SE-12, No. 1 (1986): 96-109. 

[39] Kuo, W. and Lin, H. H. "Taxonomy and Validation of Software Reliability 
Model." ACM Computing Surveys, Submitted, 1987. 

[40] Kuo, W., Lin, H. H., Xu, Z. and Zhang, W. "Reliability Optimization with the 
Lagrange Multiplier and Branch-and-bound Techniques." IEEE Trans. Relia
bility, R-36, No. 5 (1987): 624-630. 

[41] Lin, H. H. and Kuo, W. "Reliability Related Software Life Cycle Cost Model." 
Proc. 1987 Annual Reliability and Maintainability Symp., 1987, 364-368. 

[42] Littlewood, B. and Verrall J. L. "Likelihood Function of a Debugging Model for 
Computer Software Reliability." IEEE Trans. Reliability, R-30, No. 2 (1981): 
145-148. 

[43] McCabe, T. J. "A complexity measure." IEEE Trans. Software Engineering, 
SE-2 (1976): 308-320. 

[44] McCammon, S. "Applied Software Engineering: A Real-time Simulator Case 
History." IEEE Trans. Software Engineering, SE-1, No. 4 (December, 1975): 
377-383. 

[45] Miller, K. S. Linear Differential Equations. W. W. Norton and Company Inc., 
New York, 1963. 

[46] Misra, K. B. "Reliability Optimization of a Series-parallel System." IEEE 
Trans, on Reliability, R-21, No. 4 (1972): 230-238. 

[47] Morey, R. C. "Estimating and Improving the Quality of Information in a MIS." 
Communications of the ACM, 25, No. 5 (1982): 337-342. 

[48] Motteler, Z. C. Introduction to Ordinary Differential Equations. Prindle, Weber 
and Schmidt, Boston Mass., 1972. 

[49] Mourad, S. and Andrews, D. "The Reliability of the IBM MVS/XA Operating 
System." Proc. Int'l Conf. on Fault-Tolerant Computing, 1985, 93-98. 

[50] Musa, J. D., lannino, A. and Okumoto, K. Software Reliability: Measurement, 
Prediction, Application. McGraw-Hill, New-York, 1987. 



www.manaraa.com

123 

[51] Nelson, E. "Estimating Software Reliability From Test Data." Microelectronics 
and Reliability, 17, No. 1 (1978): 67-74. 

[52] Okumoto, K. "A Statistical Method for Software Quality Control." IEEE 
Trans. Software Engineering, SE-11, No. 12 (1985): 1424-1430. 

[53] PORT Mathematical Subroutine Library. AT&T Bell Laboratories, Inc., Mur
ray Hill, New Jersey, 1984. 

[54] Ramamoorthy, C. V. and Bastani, F. P. "Software Reliability-Status and Per
spectives." IEEE Trans. Software Engineering, SE-8, No. 4 (1982): 354-371. 

[55] Ramzan, M. T. "Seeded Bug Volume for Software Validation." Microelectronics 
and Reliability, 23, No. 5 (1983): 981-988. 

[56] Reifer, R. J. "Software Failure Modes and Effects Analysis." IEEE Trans. Re
liability, R-28, No. 3 (1979): 247-249. 

[57] Rubey, R. J., Dana, J. A. and Biche, P. W. "Quantitative Aspect of Software 
Validation." IEEE Trans. Software Engineering, SE-1, No. 2 (1975): 150-155. 

[58] Schick, G. J. and Wolverton, R. W. "An Analysis of Competing Software Reli
ability Models." IEEE Trans. Software Engineering, SE-4, No. 2 (1978): 104-
120. 

[59] Schick, G. J. and Wolverton, R. W. "Achieving Reliability in Large Software 
System." Proc. Annual Reliability and Maintainability Symposium, 1974, 302-
319. 

[60] Sharz, S. M. and Wang, J. P. "Introduction to Distributed-Software Engineer
ing." Computer, 21 (Oct. 1987): 23-30. 

[61] Shooman, M. L. Quality Programming. McGraw-Hill, New York, 1972. 

[62] Shooman, M. L. Probabilistic Reliability: An Engineering Approach. McGraw-
Hill, New York, 1968. 

[63] Shooman, M. L. and Laemmel, A. "Statistical Theory of Computer Programs: 
Information Content and Complexity." Digest of Papers, Fall COMPCON'77, 
IEEE, New York, Sept. 6-9, 1977, 341-347. 

[64] Trachtenberg, M. "Order and Difficulty of Debugging." IEEE Trans. Software 
Engineering, SE-9, No. 6 (1983): 746-747. 



www.manaraa.com

124 

[65] Troy, R. and Roman, Y. "A Statistical Methodology for the Study of the Soft
ware Failure Process and Its Application to the ARGOS Center." IEEE Trans. 
Software Engineering, SE-12, No. 9 (1986): 968-978. 


	1989
	Software reliability optimization by redundancy and software quality management
	Dong Hae Chi
	Recommended Citation


	tmp.1415660764.pdf.RZC67

